

Fissile Materials in South Asia: The Implications of the U.S.-India Nuclear Deal

Zia Mian, A.H. Nayyar, R. Rajaraman, and M.V. Ramana

A research report of the International Panel on Fissile Materials September 2006

Research Report No. 1 International Panel on Fissile Materials

Fissile Materials in South Asia: The Implications of the U.S.-India Nuclear Deal

Zia Mian, A.H. Nayyar, R. Rajaraman and M.V. Ramana

www.fissilematerials.org

September 2006

Table of Contents

About the IPFM	
Foreword	
Summary	
I. Introduction	
II. South Asian Nuclear Programs	
India	
Pakistan	
III. Current Stocks of Fissile Material in	
India and Pakistan	
Weapon grade plutonium	
Civil plutonium	
Enriched uranium	
IV. Drawing the Line	
The uranium constraint	
Power reactor spent fuel	/
The fast breeder reactor program	
V. Conclusions	,
Appendix 1: Power Reactors in India and Pakistan	,
Endnotes	
About the Authors and Acknowledgements	

About the IPFM

The International Panel on Fissile Materials (IPFM) was founded in January 2006. It is an independent group of arms-control and nonproliferation experts from both nuclear weapon and non-nuclear weapon states.

The mission of IPFM is to analyze the technical basis for practical and achievable policy initiatives to secure, consolidate, and reduce stockpiles of highly enriched uranium and plutonium. These fissile materials are the key ingredients in nuclear weapons, and their control is critical to nuclear weapons disarmament, to halting the proliferation of nuclear weapons, and to ensuring that terrorists do not acquire nuclear weapons. IPFM research and reports are shared with international organizations, national governments and nongovernmental groups.

The Panel is co-chaired by Professor José Goldemberg of the University of São Paulo, Brazil and Professor Frank von Hippel of Princeton University. Its founding members include nuclear experts from fifteen countries: Brazil, China, Germany, India, Japan, the Netherlands, Mexico, Norway, Pakistan, South Korea, Russia, South Africa, Sweden, the United Kingdom and the United States.

Princeton University's Program on Science and Global Security provides administrative and research support for IPFM.

For further information about the panel, please contact the International Panel on Fissile Materials, Program on Science and Global Security, Princeton University, 221 Nassau Street, 2nd floor, Princeton, NJ 08542, or by email at ipfm@fissilematerials.org.

Foreword

U.S. President George Bush and Indian Prime Minister Manmohan Singh have proposed that India have the right to import nuclear reactors and uranium for its nuclear power program. Since India is not a party to the Nuclear Nonproliferation Treaty (NPT), this would require an exemption from both the rules of the Nuclear Suppliers Group of countries and the U.S. Nonproliferation Act of 1978. (The Nuclear Suppliers Group and Nonproliferation Act were both, in large part, responses to India's use of a research reactor and reprocessing technology received under the Atoms for Peace Program to produce and separate the plutonium for its 1974 nuclear-weapon test.)

One of India's commitments under the Bush-Singh proposal would be to support a Fissile Material Cutoff Treaty (FMCT) that would end production of plutonium and highly enriched uranium for nuclear weapons. Negotiations at the U.N. Conference on Disarmament in Geneva on an international treaty have been blocked for the past decade, however, by disagreements over proposed linkages to discussions of other possible arms control and disarmament treaties.

In the interim, all five NPT nuclear weapon states (the United States, Russia, the United Kingdom, France and China) are believed to have stopped producing these materials for weapons. But India has not joined this fissile-material production moratorium, and continues to build up its stockpile of weapon materials. It has indicated that this would continue until agreement on an FMCT is reached. That might take many years.

Another concern about the Bush-Singh proposal is that it would allow India not only to continue, but also to potentially accelerate the buildup of its stockpile of weapon materials. Pakistan has indicated that it will expand its own production capability in response.

India's production of weapon grade plutonium is currently constrained by the competing demands of India's nuclear-power reactors for its limited domestic supply of natural uranium. If India could import fuel for its civilian nuclear reactors, it could use more domestic uranium for the production of weapon materials. India has exacerbated the concern that it might do so by placing eight of its heavy-water power reactors, the breeder reactor it has under construction, its reprocessing facilities, and its stocks of previously-produced reactor-grade plutonium outside international safeguards.

In this IPFM report, two Indian and two Pakistani IPFM members and researchers have carried out an assessment of how much weapon grade plutonium India could produce using its unsafeguarded power reactors and breeder reactor. This assessment should be useful to the governments of India, the United States and the members of the Nuclear Suppliers Group, and to their publics, as they consider the proposed deal.

José Goldemberg and Frank von Hippel Co-Chairs, International Panel on Fissile Materials

Summary

In July 2005, U.S. President George Bush and Indian Prime Minister Manmohan Singh agreed on a plan to lift U.S. and international restrictions on the supply of nuclear materials and technology to India. This trade has been restricted for about three decades because India has not signed the Nuclear Non-Proliferation Treaty (NPT) nor does it allow International Atomic Energy Agency (IAEA) safeguards on all its nuclear facilities.

The United States has now begun to amend its laws on nuclear trade to make an exception for India, and has sought similar changes in the rules governing the supply of nuclear fuel and technology applied by the Nuclear Suppliers Group (NSG) of states. India has designated several nuclear facilities as civilian, and volunteered them for IAEA inspection. However, the final shape and status of the deal is still unclear since the U.S. Congress may attach conditions that India may not accept, and the NSG countries may not be able to reach the necessary consensus on the deal.

The nuclear deal represents a fundamental transformation of U.S.-India relations and at the same time, a challenge to the disarmament and non-proliferation regimes. An important concern is that the deal may enable India to expand its potential nuclear weapon production capabilities and thus undermine long-standing international efforts to end the production of fissile materials for nuclear weapons world-wide.

In this analysis, we have assessed fissile material production capabilities in India, and how they might change as a result of the U.S.-India deal. We have also considered Pakistan's current stocks of fissile material, given that it has expressed concerns about the possible consequences of the U.S.-India deal.

We begin with an estimate of India's existing stockpile of fissile materials. We find that India already has about 500 kg of weapon grade plutonium from its CIRUS and Dhruva reactors, sufficient for roughly a hundred nuclear warheads. We also estimate that India has a stock of about 11.5 tons of reactor grade plutonium in the spent fuel of its heavy water based power reactors; it is not clear how much of this has been separated. The reactor grade plutonium is to be used to fuel under-construction and planned fast breeder reactor(s), but is also potentially weapon-useable. Under the terms of the deal, this stock of plutonium is being kept out of safeguards. Another 6.8 tons of reactor grade plutonium is in the spent fuel produced so far in India's currently safeguarded reactors.

Pakistan, we find, may have accumulated a stock of 1.3 tons of highly enriched uranium for its nuclear weapons from its Kahuta gas centrifuge facility, and about 90 kg of weapon plutonium from its reactor at Khushab. Pakistan also has about 1.2 tons of safeguarded reactor grade plutonium in the spent fuel from its nuclear power reactors.

We turn then to future production of fissile material in India, assuming that the nuclear deal goes ahead in its current form. But, we note that even without the deal, India could still produce additional fissile material for its nuclear weapons.

Under the terms of the deal, India's CIRUS reactor will be shut down in 2010, by which time it could yield another 45 kg of weapon grade plutonium, while the Dhruva reactor will continue to operate and to add about 20-25kg/year. There are plans to construct a new unsafeguarded reactor that can produce at least as much plutonium as Dhruva.

India has also kept the Prototype Fast Breeder Reactor (PFBR) out of safeguards arguing that "Both from the point of view of maintaining long term energy security and for maintaining the minimum credible deterrent the Fast Breeder Programme just cannot be put on the civilian list." We have estimated that this reactor, to be completed in 2010, could produce up to 130 kg of weapon grade plutonium each year; this four-fold increase in India's current production would amount to another 25 nuclear weapons a year.

India has proposed that between now and 2014 it will declare eight of its sixteen power reactors as civilian and open them for IAEA safeguarding. We estimate that these eight reactors could yield another four tons of unsafeguarded plutonium before they are opened for inspection. The remaining eight power reactors are to be unsafeguarded, 'military' facilities. They could add 1250 kg per year of reactor-grade plutonium.

In recent years, India's nuclear complex has been constrained by access to uranium. We estimate that India's current uranium production of less than 300 tons/year can meet at most, two-thirds of its needs for civil and military nuclear fuel. It has had to rely on stocks of previously mined and processed uranium to meet the shortfall and is now trying to increase production. Under the deal, India will be able to import uranium for safeguarded reactors and we estimate this may give it a 'surplus' of 70-120 tons a year of domestic uranium that it can use, if it so chose, in its weapons program. By expanding its practice of recycling depleted uranium (containing 0.61% uranium-235) from CIRUS and Dhruva in its unsafeguarded power reactors, India could increase this 'surplus.' We estimate that this could allow India to produce up to 200 kg a year of weapon grade plutonium in its 'military' power reactors, provided that it can overcome the associated practical problems of increased rates of spent fuel reprocessing and faster refueling of power reactors.

Pakistan's National Command Authority (NCA), chaired by President Pervez Musharraf, has declared that "In view of the fact the [U.S.-India] agreement would enable India to produce a significant quantity of fissile material and nuclear weapons from unsafeguarded nuclear reactors, the NCA expressed firm resolve that our credible minimum deterrence requirements will be met." This suggests that an expansion of fissile material stockpiles in South Asia may ensue, even though it would be at odds with the policies of "minimum deterrence" announced by both India and Pakistan. Both states already far exceed the fissile material requirements for a 'minimal' nuclear arsenal.

Rather than pursue the option of a large expansion of their nuclear arsenals, they should choose to suspend all further production of fissile materials for weapons purposes, pending the negotiation and entry into force of a Fissile Material Cut-off Treaty.

"It is easy to see that in certain circumstances aid given by the [International Atomic Energy] Agency with its full safeguards system in operation could help in accelerating a military programme. Let us assume that the country receiving aid received from the Agency heavy water or fissile material for a reactor for peaceful purposes. If the country concerned already has heavy water or fissile material, the loan of the Agency's heavy water or fissile material to that extent liberates the country's own materials for use in military programmes."

Homi Bhabha, Founder of the Indian nuclear program, 1964.¹

I. Introduction

On July 18, 2005, U.S. President George Bush and Indian Prime Minister Manmohan Singh issued a joint statement in Washington, D.C. laying the grounds for the resumption of U.S. and international nuclear trade with India.² This trade has been suspended for about three decades because India is neither a signatory to the Nuclear Non-Proliferation Treaty (NPT) nor allows International Atomic Energy Agency (IAEA) safeguards on all its nuclear facilities. The July agreement has generated domestic political debate in the United States and India, and concern on the part of a number of other countries.³ Among the issues is the fear that the agreement serves to normalize India's status as a nuclear weapon state and so weakens the NPT and the larger nonproliferation regime. Another important concern is that it may serve to expand India's potential nuclear weapon production capabilities, and thus hinder international efforts to end the production of fissile materials for nuclear weapons.

As part of the July 2005 deal, the Bush Administration offered both to amend U.S. laws and policies on nuclear technology transfer and to seek the necessary exemptions in the international controls on the supply of nuclear fuel and technology managed by the Nuclear Suppliers Group (NSG) of states so as to allow nuclear trade with India. In exchange for the lifting of these restrictions, India's government offered to identify and separate civilian nuclear facilities and programs from its nuclear weapon complex, and volunteer these civilian facilities for IAEA safeguarding. However, the final shape and status of the deal is still unclear since it will require the U.S. Congress to amend existing laws, and a consensus among the NSG countries, both of which may attach conditions that India may not accept.⁴

At the March 2006 summit in New Delhi between President Bush and Prime Minister Singh, it was announced that the Bush Administration was satisfied with the proposed Indian plan to separate its program into a civilian and a military component.⁵ The separation plan offers to subject eight Indian power reactors that are either operating or under construction to IAEA safeguards, in addition to the six reactors that are already subject to safeguards because they were purchased from abroad [see Appendix 1 for a list of India's operating and under construction reactors]. These 'civilian' facilities will be put under safeguards "in a phased manner" by 2014 and thereafter will remain open to inspections in perpetuity. India's remaining eight power reactors, all its research reactors, and the plutonium-fuelled fast breeder reactor program are to be part of the military

program. India also offered to shut down, by 2010, a reactor supplied by Canada, for peaceful purposes, but whose plutonium was used in the 1974 nuclear weapon test. India also claimed the right to classify, as either civilian or military, any future reactors it might build.

The nuclear agreement has elicited great concern from Pakistan, which has demanded from the United States (and been refused) the same deal as is being offered to India.⁶ China has called for any exemptions for international nuclear cooperation and trade agreed to by the NSG to be open to Pakistan as well.⁷ The United States has refused.⁸

Pakistan's Prime Minister, Shaukat Aziz, observed that "nuclear nonproliferation and strategic stability in South Asia will be possible when the U.S. fulfills the needs of both Pakistan and India for civil nuclear technology on an equal basis," and warned that "a selective and discriminatory approach will have serious implications for the security environment in South Asia."⁹ Pakistan's National Command Authority (NCA), which is chaired by President Pervez Musharraf and has responsibility for its nuclear weapon policies and production, declared that, "In view of the fact the [U.S.-India] agreement would enable India to produce a significant quantity of fissile material and nuclear weapons from unsafeguarded nuclear reactors, the NCA expressed firm resolve that our credible minimum deterrence requirements will be met."¹⁰ However, at the same time, Pakistan's ambassador to the United States, and former Army chief, General Jahangir Karamat offered that "if bilaterally, the U.S. can facilitate a moratorium on fissile material production or on testing: we are very happy to be part of that."¹¹

We discuss here the technical issues related to fissile materials that are involved in these concerns about the agreement.¹² First we review the estimated fissile material production and stockpiles in South Asia. We then assess the significance for India's future weapon-useable fissile material production capabilities of the line India has drawn between its civilian and military facilities.

II. South Asian Nuclear Programs

India and Pakistan have long-standing nuclear weapon programs that are linked to their civilian nuclear infrastructure. International support was crucial in the development of these complexes in both states. Most of this support followed the 1953 launch of the U.S. Atoms for Peace program, which sought to encourage third world countries to become U.S. allies by offering nuclear technology, but had unfortunate consequences in facilitating proliferation in South Asia and elsewhere.¹³

India

Established in 1948, India's Atomic Energy Commission turned to the United Kingdom for the design and enriched uranium fuel for its first nuclear reactor, Apsara. Similarly, the CIRUS reactor was supplied by Canada while the heavy water used in it came from the United States. India's first power reactors at Tarapur and Rawatbhata were supplied by the United States and Canada respectively. A U.S. design was used for India's first reprocessing plant in Trombay. Some of these technologies and materials contributed to the production and separation of the plutonium used in India's 1974 nuclear weapons test. Due to this test and its subsequent refusal to give up its nuclear weapons and sign the NPT, India has been kept largely outside the system of trade of nuclear technology that has developed over the past three decades.

India has over the years built a nuclear power program, with fifteen reactors [Appendix 1] providing today an installed capacity of 3310 megawatts electric (MWe), which accounts for about 3% of India's installed electricity generation capacity. Thirteen of the reactors are Pressurized Heavy Water Reactors (PHWRs), the first two of which were supplied by Canada. The other PHWR reactors are Indian built but largely based on the Canadian design. The latest evolution of the design has increased the capacity from 220 to 540 MWe. The other two power reactors are first-generation Boiling Water Reactors supplied by the United States.

Only the four foreign supplied reactors are currently under IAEA safeguards. Two 1000 MWe reactors being built by Russia, under a 1988 deal, will also be safeguarded. These two large reactors will increase India's nuclear capacity by over 50 per cent in the next few years.

For decades, India's Department of Atomic Energy (DAE) has pursued an ambitious fastbreeder reactor development program. This involves separating plutonium from the spent fuel produced in natural uranium reactors and using it to fuel fast-neutron breeder reactors, which in turn could be used to produce U-233 that would eventually serve to fuel breeder reactors operating on a Th-U-233 closed fuel cycle.¹⁴ These efforts have made slow progress: the first breeder reactor to be built, the Fast Breeder Test Reactor, was due to become operational in 1976 but started only in 1985 and has been plagued with problems.¹⁵ The 500-MWe Prototype Fast Breeder Reactor is not expected to be completed until 2010, if all goes according to plan. India has also begun work on a prototype plutonium-thorium-uranium-233 fuelled Advanced Heavy Water Reactor (AHWR) to gain experience with the thorium and U-233 fuel cycle.¹⁶ India conducted its first nuclear weapon test in May 1974. There were another five tests in 1998, involving fission weapons and a thermonuclear weapon. There are reports that at least one test used plutonium that was less than weapon grade.¹⁷ India is believed to have a stockpile of perhaps 40-50 nuclear weapons. One report cites plans for 300-400 weapons within a decade.¹⁸

Pakistan

Pakistan obtained its first research reactor from the United States as part of the Atoms for Peace Program. Its first power reactor, a 137 MWe PHWR built by Canada, began operating in 1972. Since 2001, a 325 MWe Pressurized (Light) Water Reactor (PWR), designed and built by China, has been operating at Chashma. A second reactor of the same type is under construction at the same site. All of these foreign-supplied reactors are under IAEA safeguards [Appendix 1].

After India's 1974 nuclear test, Pakistan sought technology both to separate plutonium and to enrich uranium for its nuclear weapons program. A 1974 deal with France for a reprocessing plant was canceled in 1978 amid growing concerns about a possible Pakistani nuclear weapons program.¹⁹ But A.Q. Khan, a Pakistani metallurgist working for a subsidiary of the European enrichment company, URENCO, was able to acquire centrifuge technology and Pakistan succeeded in enriching uranium at its Kahuta centrifuge uranium enrichment facility in 1982.²⁰ In 1998, Pakistan also began operating a plutonium-production reactor at Khushab.²¹ A second reactor is now under construction at the same site, with work apparently having begun on it in 2000.²²

In 1998, Pakistan followed India in testing nuclear weapons. A 2001 estimate suggested Pakistan may by then have had an arsenal of 24-48 nuclear weapons.²³

III. Current Stocks of Fissile Material in India and Pakistan

India and Pakistan are producing fissile materials for their nuclear weapon programs. Along with Israel and perhaps North Korea, they may be the only states currently doing so. The five NPT nuclear weapon states, the United States, Russia, the United Kingdom, France and (informally) China, have all announced an end to fissile material production for weapons.

Weapon grade plutonium

As far as is known, India's weapon-grade plutonium comes from the 40 megawatt thermal (MWt) CIRUS and 100 MWt Dhruva reactors (Figure 1).

Figure 1. The Dhruva (left) and CIRUS (right) reactors (IKONOS satellite image courtesy of GeoEye.)

Public details of the operating histories for CIRUS and Dhruva are sparse. CIRUS became critical in 1960 and fully operational in 1963. An extended refurbishment of CIRUS started in October 1997, and it resumed operation in October 2003.²⁴ Dhruva was commissioned in 1985 but began normal operation in 1988.²⁵ One figure that has been published is the availability factor, which is the fraction of time that the reactor is operable. CIRUS is reported to have an "availability factor of over 70 %."²⁶ In 2000, Dhruva was claimed to have "achieved an availability factor of over 68% during the year which is the highest so far."²⁷

Assuming that the reactors operate at full power when they are available allows an upperbound estimate of plutonium production. At full power and an availability factor of 70%, each year CIRUS would produce about 10.2 tons of spent fuel, containing about 9.2 kg of weapon grade plutonium, and Dhruva would produce about 25.6 tons of spent fuel containing 23 kg of weapon grade plutonium.²⁸

Pakistan has a smaller plutonium production potential from its 50 MWt Khushab reactor (Figure 2).²⁹ It is a natural uranium-fuelled heavy water reactor and appears to be similar to India's CIRUS reactor.

Figure 2. The Khushab reactor (IKONOS satellite image courtesy of GeoEye).

There is little information available about the history and operating experience of the Khushab reactor, other than that construction started in 1985 and it started operating in early 1998.³⁰ Assuming that the Khushab reactor has been operated in a fashion similar to India's CIRUS reactor, it could produce almost 12 kg of plutonium per year.³¹

The capacity of the second reactor being built at Khushab (Figure 3) is still uncertain. One estimate suggests it may be as high as 1000 MWt, which would allow it to produce as much as 200 kg of weapon grade plutonium a year.³² However, government officials from the United States and Pakistan, as well as some independent analysts, have disputed this; a U.S. official claimed that the reactor under construction may be "over 10 times less capable" than had been reported, i.e. it may have about the same capacity as the existing one.³³

Figure 3. The reactor under construction at Khushab (12 August 2006; IKONOS satellite image courtesy of GeoEye).

The estimated cumulative weapon grade plutonium production for India and Pakistan is given in Table 1.³⁴ It does not include the possibility of a few tens of kilograms of plutonium from the lower burn-up initial discharges of India's unsafeguarded PHWRs having been added to this stockpile.³⁵ For both India and Pakistan, it is hard to know how much of the plutonium that has been recovered from spent fuel has been incorporated into weapons.

	India		Pakistan
Reactor	CIRUS	Dhruva	Khushab
Cumulative Plutonium production (kg)	234	414	92

Table 1. Estimated cumulative wea	pon grade	plutonium r	production ()	kg) up t	o 2006
Tuble It Bounded candidate of the					

Spent fuel from CIRUS and Dhruva is reprocessed at the Trombay reprocessing plant. This plant started functioning in 1964 with a capacity of 30 tons/year, but was shut down for renovation and a capacity increase after the first Indian nuclear test in 1974. When it restarted operation in 1985, its capacity had increased to 50 tons/year.³⁶ India also has two much larger reprocessing plants at Tarapur (commissioned in 1977) and Kalpakkam (commissioned in 1998) to recover plutonium from spent power reactor fuel (Table 2).³⁷

India plans to increase its annual reprocessing capacity to 550 tons by 2010 and to 850 tons by 2014 to meet the needs of its fast breeder reactor program and AHWR.³⁸

The spent fuel from Pakistan's Khushab reactor is believed to be reprocessed at the New Labs facility near Islamabad, which has a capacity of 10-20 tons/year of heavy metal.³⁹ In March 2000, it was reported that "recent air samples" which had been "taken secretly" showed that "Pakistanis have begun reprocessing."⁴⁰ This report seems to be consistent with estimates of the detectability of krypton-85 released by reprocessing at the New Labs facility.⁴¹

	India	Pakistan
Trombay	50	
PREFRE (Tarapur)	100	
KARP (Kalpakkam)	100	
New Labs (Rawalpindi)		10-20

 Table 2. Reprocessing plant capacities in India and Pakistan (tons of heavy metal in spent fuel per year)

Some of India's weapon grade plutonium has been consumed over the years in nuclear weapons tests, as reactor fuel and in processing losses. We estimate about 6 kg for India's 1974 nuclear weapons test. ⁴² We assume that another 25 kg may have been used in the five presumably more advanced weapons tests in 1998. As for reactor fuel, we assume India used 20 kg for the core of the Purnima I research reactor, and 60 kg for the first (Mark I) core of the Fast Breeder Test Reactor.⁴³ We estimate about 20 kg to have been lost in processing. Taken together, this suggests a total of 131 kg of weapon grade plutonium was consumed. This would leave India with a current stockpile of about 500 kg of weapon grade plutonium, sufficient for about 100 nuclear weapons.⁴⁴

Civil plutonium

India's power reactors produce plutonium in their fuel as a normal by-product of energy generation. Since the chosen way of dealing with the spent fuel is through reprocessing, the result is a large additional stockpile of separated plutonium. This plutonium could be used to make nuclear weapons.⁴⁵

As of May 2006, India's unsafeguarded reactors had produced about 149 trillion watt hours or terrawatt hours (TWh) of electricity. Their spent fuel would contain about 11.5 tons of plutonium.⁴⁶ They are producing about 1.45 tons of plutonium per year. This spent fuel has to be cooled for some years before reprocessing, but this does not greatly change the total plutonium content.⁴⁷ Assuming fuel is cooled on average for three years, only spent fuel generated before 2003 would have been reprocessed by 2006, in which case, no more than about 9 tons of plutonium could have been separated. It is not clear how much has actually been extracted.⁴⁸ PREFRE, the only reprocessing plant dedicated to dealing with power reactor spent fuel before 1998, has apparently operated at very low capacity factors.⁴⁹

India's safeguarded power reactors have produced 108 TWh of electricity, and 1266 tons of spent fuel, containing about 6.8 tons of plutonium.⁵⁰ Little of this spent fuel has been reprocessed; it is stored in spent fuel pools and then moved to dry cask storage.⁵¹

Pakistan has no unsafeguarded civil plutonium stocks. Both its power reactors, Kanupp (137 MWe PHWR) and Chashma (325 MWe PWR), are under safeguards. As of May 2006, they had generated cumulatively about 22 TWh of electricity and discharged spent fuel containing roughly 1.2 tons of unseparated plutonium.⁵²

	Plutonium Content in Spent Fuel (kg)				
	Unsafeguarded	Safeguarded			
India	11,500	6800			
Pakistan		1200			

Table 3. Estimated cumulative civilian reactor grade plutonium production (May 2006)

Figure 4. Spent fuel pool and fuel handling area, Kalpakkam reprocessing plant.⁵

Enriched uranium

India has two gas-centrifuge uranium enrichment facilities. The Bhabha Atomic Research Center complex has had a pilot scale plant operating since 1985 and there is a larger production scale plant at Rattehalli, near Mysore, Karnataka that has been working since 1990 (Figure 5).

Rattehalli is believed to enrich uranium to fuel the land-prototype reactor for India's nuclear-powered submarine project, the Advanced Technology Vessel.⁵⁴ Assuming that the ATV prototype core contained 90 kg U-235 when the core was tested in 2000-2001, a 2004 estimate suggested the enrichment capacity of the Rattehalli plant was about 4000 SWU/y.⁵⁵ This corresponds to the facility producing about 40-70 kg/year of 45% to 30%

enriched uranium respectively. This enrichment capacity could yield 20 kg/year of weapon grade uranium (93% U-235).

Figure 5. The centrifuge enrichment plant at Rattehalli, Mysore.⁵

For Pakistan, it has been suggested that the enrichment capacity at Kahuta (Figure 6) may have increased over the past two decades.⁵⁷ In this case, it could have produced a stockpile of 1100 kg of highly enriched uranium by the end of 2003.⁵⁸ If production continued at 100 kg/year, Kahuta would have produced about 1400 kg of weapon grade uranium by the end of 2006.⁵⁹

Figure 6. The centrifuge halls at Kahuta (IKONOS satellite image courtesy of GeoEye).⁶

These estimates do not take into account the possibility that Pakistan may have other enrichment facilities. In 1999, the U.S. Department of Commerce listed centrifuge facilities at Golra, Sihala, and Gadwal as also subject to export restrictions.⁶¹ There is no public indication of their capacity.

Pakistan claims to have tested six nuclear weapons in 1998. Assuming that each weapon used 20 kg in its core, the tests would have consumed 120 kg of HEU. This would give Pakistan a weapons HEU stockpile now of about 1300 kg, sufficient for about 65 weapons.⁶² It is not known how much of this fissile material is actually in the form of weapon cores.

	Assumed SWU Capacity (2005)	Highly Enriched Uranium (kg)
India	4100	460-700 (45-30% enrichment)
Pakistan	20,000	1400 (90% enrichment)

IV. Drawing the Line

A central feature of the U.S.-India agreement is the separation of India's nuclear facilities into civil and military, with the former category being made available for IAEA monitoring. At the time of writing, the U.S. Administration had accepted a separation plan presented by Prime Minister Manmohan Singh to the Indian Parliament on 7 March 2006.⁶³

According to this proposal, civilian facilities "after separation, will no longer be engaged in activities of strategic significance" and "a facility will be excluded from the civilian list if it is located in a larger hub of strategic significance, notwithstanding the fact that it may not be normally engaged in activities of strategic significance." Further, the separation would be conditioned "on the basis of reciprocal actions by the U.S."

From the 22 power reactors in operation or currently under construction, India has offered to place eight additional reactors under safeguards between 2006 and 2014, each with a capacity of 220 MWe. These are:

- Two Rajasthan reactors still under construction, RAPS 5 and 6, which would be made available for to IAEA monitoring when they commence operation in 2007 and 2008 respectively,
- RAPS 3 and 4, which are already operating but would only be available for safeguards in 2010,
- The two Kakrapar reactors, which would to be made available for safeguards in 2012, and
- The two reactors at Narora would become available for safeguards in 2014.⁶⁴

Currently, India has four reactors under IAEA safeguards, the U.S.-built Tarapur 1 and 2, and the Canadian-built Rajasthan 1 and 2. The two Koodankulam reactors that are under construction by Russia will also be subject to safeguards under the associated India-Russian contract.

Some of the facilities at the Nuclear Fuel Complex, Hyderabad, have been identified as civilian and are to be offered for safeguards by 2008.⁶⁵ Other facilities to be declared civilian include three heavy water plants (leaving at least two out of safeguards), and the two Away-from-Reactor spent fuel storage facilities that contain spent fuel from the safeguarded Tarapur and Rajasthan reactors.

India would permanently shut down the Canadian-build CIRUS reactor in 2010, which has been used to make weapon grade plutonium. It would also shift the spent fuel from the APSARA reactor to a site outside the Bhabha Atomic Research Centre and make it available for safeguarding in 2010.

A significant proportion of India's nuclear complex would remain outside IAEA safeguards and could have a "strategic" function. This unsafeguarded nuclear complex would include the Tarapur 3 & 4 reactors, each of 540 MWe capacity, the Madras 1 & 2 reactors, and the four power reactors at Kaiga.⁶⁶ Together, these unsafeguarded reactors have 2350 MWe of electricity generation capacity. India also will not accept safeguards on the Prototype Fast Breeder Reactor (PFBR) and the Fast Breeder Test Reactor (FBTR), both located at Kalpakkam. Facilities associated with the nuclear submarine propulsion program would not be offered for safeguards.

Reprocessing and enrichment facilities also are to remain outside safeguards.⁶⁷

Finally, under the deal, India retains the right to determine which future nuclear facilities it builds would be civilian and open to safeguards and which would not.

The uranium constraint

One important reason for the DAE's willingness to agree to have more of its nuclear facilities placed under safeguards is India's severe and growing shortage of domestic uranium. Nuclear Power Corporation of India data shows that most of its reactors have had lower capacity factors in the last few years.⁶⁸ The Indian Planning Commission noted that these reduced load factors were "primarily due to non-availability of nuclear fuel because the development of domestic mines has not kept pace with addition of generating capacity."⁶⁹ An Indian official told the BBC soon after the U.S.-India deal was announced, "The truth is we were desperate. We have nuclear fuel to last only till the end of 2006. If this agreement had not come through we might have as well closed down our nuclear reactors and by extension our nuclear program."⁷⁰ The former head of the Atomic Energy Regulatory Board has reported that "uranium shortage" has been "a major problem... for some time."⁷¹

We analyze here the extent to which this uranium constraint will be eased if the nuclear deal goes through and the ways in which the uranium supply so liberated could be used to increase India's rate of production of plutonium for weapons.

As background, recall that apart from imported low-enriched uranium for two very old imported U.S. reactors, India relies on its domestic uranium reserves to fuel its nuclear reactors. As of May 2006, the total electric capacity of India's power reactors that were domestically fuelled was 2990 MWe – this includes the Rajasthan 1 and 2 reactors, which are under safeguards but have to be fuelled by domestic uranium. At 80% capacity, these reactors would require about 430 tons of natural uranium fuel per year. The weapon grade plutonium production reactors, CIRUS and Dhruva, consume about another 35 tons of uranium annually. The uranium enrichment facility would require about 475 tons of natural uranium feed a year. Thus, the total current requirements are about 475 tons of domestic natural uranium per year.⁷²

In comparison, we estimate that current uranium production within India is less than 300 tons of uranium a year, well short of these requirements, but is being expanded rapidly.⁷³ DAE has been able to continue to operate its reactors by using uranium stockpiled period

when India's nuclear generating capacity was much smaller. Our estimates are that, in the absence of uranium imports or cutbacks in India's nuclear power generation, this stockpile will be exhausted by 2007.

India is estimated to have total conventional uranium resources of about 95,500 tons of uranium, sufficient to supply about 10 GWe installed capacity of PHWRs for forty years or so.⁷⁴ However, the Department of Atomic Energy's efforts to open new uranium mines in the country have met with stiff resistance, primarily because of concerns in the communities around existing mines about the health impacts of uranium mining and milling.⁷⁵ State governments in Andhra Pradesh and Meghalaya, where DAE has found significant uranium deposits, have yet to approve new licenses for uranium mining and milling activities.⁷⁶ It is possible that DAE may be able to overcome this resistance. The most likely new sites are in the districts of Nalgonda and Kadapa, Andhra Pradesh, with projected annual capacities of about 150-200 tons and 250 tons of uranium respectively.⁷⁷ If these mines are developed, then India could meet its current domestic uranium needs for both its nuclear power reactors and weapons program. In the meantime, old mines are being re-opened and existing mines expanded, including at Jaduguda.⁷⁸

In the next few years, the domestic uranium demand for India's unsafeguarded reactors will increase further by about 140 tons/year, to 575 tons per year, as the 540 MWe Tarapur-3 and the 220 MWe Kaiga-3 & Kaiga-4 reactors are completed and begin operation in 2007. However, the total domestic uranium requirement will begin to decrease as some of the currently unsafeguarded reactors are opened for inspection in 2010, 2012 and 2014 as well as the Rajasthan-1 and 2 reactors can be fuelled with imported uranium (Figure 7). Consequently, if India is able to meet the additional demand for domestic uranium until 2010, the availability of uranium imports allowed by the U.S.-India deal thereafter will give it a growing excess uranium production capacity that could be used for weapons purpose.

Figure 7. Estimated annual domestic uranium requirements for unsafeguarded heavy water power reactors.⁷⁹

India has offered to put 1760 MWe of PHWRs under safeguards (including two reactors under construction) in addition to the two Rajasthan PHWRs with a combined capacity of 300 MWe that are already under safeguards. Without access to international uranium, all these reactors would have to be fueled using domestic uranium. At an 80% capacity factor, they would require about 300 tons of uranium annually. If the deal goes through, the DAE will be able to purchase these 300 tons of uranium from the international market, in effect freeing up the equivalent of India's entire current uranium production for possible use in military facilities. With Nalgonda on line, the uranium available for the unsafeguarded power and weapon grade plutonium production reactors and the enrichment program increases to 450-500 tons/year. This would yield a uranium surplus of 75-125 tons a year after 2014.

There are several ways in which India could use its freed-up domestic uranium. In particular, concern has been raised about the possibility that it might be used to increase India's production of weapon-grade plutonium. This option has been suggested by, among others, K. Subrahmanyam, former head of the National Security Advisory Board, who has argued that "Given India's uranium ore crunch and the need to build up our minimum credible nuclear deterrent arsenal as fast as possible, it is to India's advantage to categorize as many power reactors as possible as civilian ones to be refueled by imported uranium and conserve our native uranium fuel for weapons grade plutonium production."⁸⁰

There are different ways in which this could be accomplished. One is that India could choose to build a third reactor dedicated to making plutonium for its nuclear weapons. There have been proposals for many years to build another plutonium production reactor at the Bhabha Atomic Research Centre in Bombay.⁸¹ The proposed reactor would be similar to the 100 MWt Dhruva that has been operating at BARC since 1985. A decision on whether to go ahead is expected early in 2007.⁸² If a reactor of the same power rating as Dhruva is built, it could yield an additional 20-30 kg of plutonium, i.e. several bombs worth, each year.

India also could choose to use some of its domestic uranium to make weapon grade plutonium in one of its unsafeguarded PHWRs. This can be done by limiting the time the fuel is irradiated, through more frequent refueling.⁸³ This is beyond the normal design requirement of PHWR refueling machines, but might be possible. Assuming that such high refueling rates are sustainable, then a typical 220 MWe pressurized heavy water reactor could produce between 150-200 kg/year of weapon grade plutonium when operated at 60-80 per cent capacity.⁸⁴ Even one such reactor, if run on a production mode, could increase India's current rate of plutonium production by a factor of six to eight.⁸⁵ The net requirement of extra uranium for running one 220 MWe reactor in production mode is 190 tons of natural uranium.⁸⁶

To see if this option can be sustained given India's supply of domestic uranium, we summarize in Table 5 various possibilities. The table shows estimates for the uranium requirements for Dhruva, and of running an unsafeguarded 220 MWe power reactor at very low burn-up to optimize weapon grade plutonium production. The table also gives

the aggregate uranium demand of the eight unsafeguarded power reactors if they operate normally.

	Burn Up (MWd/tHM)	Uranium Demand (tons/year)	Reactor-Grade Plutonium (kg/y)	Weapon Grade Plutonium (kg/y)
Dhruva	1000	29		26
One 220 MWe reactor run for weapon grade plutonium	1000	222		200
Seven reactors in power mode and one 220 MWe reactor in production mode ⁸⁷		528	1147	200
Seven reactors in power mode with partial depleted uranium cores and one 220 MWe reactor in production mode		467		200
All eight reactors in power mode	7000	338	1265	
All eight reactors in power mode with partial depleted uranium cores		270		

Table 5. Uranium requirements for India's unsafeguarded reactors in various operating modes

Note: All reactors are assumed to run at 80% capacity factor.

Rows 1 and 3 of Table 5 show that if one power reactor were to be run to produce weapon grade plutonium, and with normal operation of the other unsafeguarded power reactors, plus Dhruva, India would require almost 560 tons of uranium per year, for which additional domestic sources would have to be found.

To offset the additional 190 tons/year of uranium required if India were to operate a single 220 MWe PHWR in weapon grade plutonium production mode, it could recycle some of the depleted uranium recovered from the spent fuel from this reactor into the other seven unsafeguarded power reactors. This scheme involves fuelling 25% of the core with depleted uranium (containing 0.61% U-235) and ends up saving 20% of the normal natural uranium requirement, with the average burn up reduced to 5400 MWd/tHM.⁸⁸

The resulting 20% saving on the roughly 306 tons/year of natural uranium the seven power reactors require is equivalent to 61 tons/year of natural uranium. The net penalty of running one reactor in production mode is reduced from 190 tons/year to about 130/tons per year.⁸⁹ This implies that India could operate an unsafeguarded 220 MWe heavy water reactor in production mode, provided the Nalgonda and other mines can yield an additional 200 tons/year of uranium, and that India has sufficient reprocessing capacity to maintain the necessary flow of depleted uranium.

India has already fuelled some PHWRs – including the Rajasthan-3 & 4, Kaiga-2 and Madras-2 reactors – using natural uranium and depleted uranium recovered as a byproduct of weapon grade plutonium production.⁹⁰ It has used depleted uranium recovered from low burn-up fuel from CIRUS and Dhruva.⁹¹ These reactors generate only about 30 tons/year of spent fuel. However, there is a stock of about 750 tons of such spent fuel.⁹² This would suffice for roughly four to five years if all the power reactors ran on a mixed natural and depleted uranium core.

Power reactor spent fuel

The nuclear deal does not constrain India's use of the plutonium from the spent fuel discharged by any of its currently unsafeguarded reactors. The six currently operating reactors to be placed under safeguards will add to the current stock of 11.5 tons of reactor grade plutonium before they are opened to inspection. Operating at 80% capacity, each reactor would add about 120 kg/year of plutonium during its remaining unsafeguarded operation. The total contribution from these six reactors will be about 4300 kg before they are all finally under safeguards (Table 6).

Reactor	Proposed Date of Safeguarding	Plutonium Production (kg) Before Reactor is Safeguarded
Rajasthan-3	2010	475
Rajasthan-4	2010	475
Kakrapar-1	2012	712
Kakrapar-2	2012	712
Narora-1	2014	950
Narora-2	2014	950
Τα	otal	4274

Table 6. Projected plutonium production from 2007 till reactors are safeguarded

The total annual unsafeguarded plutonium production will increase from the current 1450 kg/year as reactors under construction come into operation next year and then decline in coming years as reactors are opened for inspection. Plutonium production will be reduced from about 2000 kg/year in 2007 to about 1250kg/year after 2014, when it will stabilize (Figure 8) unless additional unsafeguarded reactors are built. Thus, the separation plan will serve to reduce India's annual production of unsafeguarded plutonium by about one-third.

Figure 8. Annual production of unsafeguarded plutonium from all Indian power reactors from 2007 until 2016, as reactors are progressively placed under safeguards.

The "reactor-grade" plutonium in the high burn up spent fuel being discharged by these reactors has a different mix of isotopes from weapon grade plutonium. However, reactor-grade plutonium can be used to make a nuclear explosive and, as mentioned earlier, one of India's May 1998 nuclear tests is reported to have involved such material.⁹³

An estimated 8 kg of reactor grade plutonium would be required to make a simple nuclear weapon.⁹⁴ If this plutonium is not put under safeguards, it could provide an arsenal of over 1300 weapons.

A commonly cited problem with the use of reactor grade plutonium is the increased risk of a "fizzle yield", where a premature initiation of the fission chain reaction by neutrons emitted by fissioning of plutonium-240 leads to pre-detonation of the weapon and an explosive yield only a few percent of the design value. In Indian PHWR spent fuel, plutonium-240 is over 22% of the total plutonium (compared to about 5% in weapon grade plutonium).⁹⁵ The greater abundance of plutonium isotopes other than Pu-239 in reactor grade plutonium also leads to increased heat generation and radiation from a mass of this material. However, these are not insuperable engineering difficulties.

The U.S. Department of Energy has noted that "At the lowest level of sophistication, a potential proliferating state or sub-national group using designs and technologies no more sophisticated than those used in first-generation nuclear weapons could build a nuclear weapon from reactor grade plutonium that would have an assured, reliable yield of one or a few kilotons (and a probable yield significantly higher than that). At the other end of the spectrum, advanced nuclear weapons from reactor grade plutonium having reliable explosive yields, weight, and other characteristics generally comparable to those of weapons made from weapons-grade plutonium."⁹⁶ India presumably falls somewhere in this spectrum.

One 'modern design' feature that allows reactor grade plutonium to be used for weapons is 'boosting', in which a gas mixture of deuterium and tritium is introduced into the hollow core of an implosion weapon just before it detonates.⁹⁷ The fusion reaction that is triggered releases a large quantity of neutrons, which are able in turn to initiate fission more quickly in a larger mass of the fissile material than the normal chain reaction. This serves to greatly increase the yield. Indian weapon designers claim to have tested a thermonuclear weapon with a boosted fission primary in 1998.⁹⁸ One history of India's nuclear weapons program notes explicitly the use of boosting in a reactor grade plutonium device test in 1998 and observes that "if validated it would increase India's stock of fissile material dramatically."⁹⁹

The fast breeder reactor program

India's Department of Atomic Energy has consistently offered the potential shortage of domestic uranium and India's abundant thorium reserves as the justification for its plutonium fuelled fast breeder reactor program. India would gain access to the international uranium market as part of the agreement with the United States and so end the prospect of future uranium shortages.

An important concern is that the DAE has chosen to keep the breeder program out of IAEA safeguards as part of the nuclear deal. In support of this, DAE has raised concerns that safeguards would unduly constrain reactor research and development programs.¹⁰⁰ But IAEA safeguards do not seem to have compromised or limited the development of commercial breeder programs in Germany and Japan, or that of new generations of PHWRs in Canada. The many technical and safety problems that breeder programs in various countries have experienced have been for other reasons.

DAE chairman Anil Kakodkar has also declared that, "Both from the point of view of maintaining long term energy security and for maintaining the minimum credible deterrent the Fast Breeder Programme just cannot be put on the civilian list."¹⁰¹ This suggests that the breeder may be used to produce weapon grade plutonium.

India's first large breeder reactor, the 500 MWe, Prototype Fast Breeder Reactor (PFBR) is located at Kalpakkam, near Madras. It is part of a larger complex that includes the Madras PHWR reactors and a reprocessing plant. This entire complex is being kept outside safeguards.¹⁰² The PFBR is expected to be completed in 2010 (Figure 9).

Figure 9. Construction activity at Prototype Fast Breeder Reactor, Kalpakkam, April 2006.¹⁰³

Fueled initially by reactor grade plutonium separated from PHWR spent fuel, the PFBR would produce weapon grade plutonium in both its radial and axial blankets of depleted uranium while plutonium recovered from the core could be recycled for use again as fuel. To recover the weapon grade plutonium, the core and blanket fuel assemblies would have to be reprocessed separately. This would include separating the axial blanket from the part of the fuel assembly that lies within core, which can done by using shearing machines to cut the fuel assemblies prior to reprocessing.¹⁰⁴ Plans for a dedicated reprocessing plant for FBR fuel have been developed.¹⁰⁵

The PFBR is designed to have a thermal power of 1250 MW and an initial inventory of 1910 kg of plutonium in its core.¹⁰⁶ The current design is reported to have an overall, equilibrium cycle breeding ratio of almost 1.05.¹⁰⁷ Applying the neutron balance in a generic breeder reactor with a homogeneous core permits a first order estimate of plutonium production in the PFBR core and its radial and axial blankets.¹⁰⁸ With these uncertainties in mind, we find that at 80% capacity the PFBR could produce on the order of 135 kg of weapon grade plutonium every year in its blanket.¹⁰⁹ This would amount to about 25-30 weapons worth of plutonium a year, a four to five fold increase over India's current weapon plutonium production capacity.

India plans to build four additional breeder reactors by 2020, and then move to larger 1000 MWe breeders and eventually install 500 GWe of breeder capacity.¹¹⁰ Each of the four planned 500 MWe breeder reactors would need two initial cores before they would be able to begin recycling their own plutonium, a total of about 16 tons.¹¹¹ India would appear to have more than sufficient unsafeguarded plutonium for placing all four of the planned breeders in the military sector. If these five breeders are built and all are kept military, then in about fifteen years, India would be able to produce about 500-800 kg per year of weapon grade plutonium from them.

V. Conclusions

The July 2005 U.S.-India joint statement represents a fundamental transformation of U.S.-India relations and at the same time a challenge to the disarmament and non-proliferation regime. The U.S. Congress and the Nuclear Suppliers Group of countries will have to take that fact into account as they consider whether or not to approve the deal.

The March 2006 separation plan proposed by India as the basis for demarcating its military and civilian nuclear facilities lays the basis for a potentially rapid expansion of its capacity for fissile material production for weapons.

In this article, we have assessed the fissile material production capabilities in India and how they might change as a result of the U.S.-India deal.

We have estimated India's current stockpile of weapon grade plutonium from its CIRUS and Dhruva reactors and found it to be about 500 kg. Assuming a typical figure of 5 kg of plutonium for each nuclear warhead, this stockpile would be sufficient for roughly a hundred weapons.

Under the deal, India will be able to produce another 45 kg of weapon grade plutonium from its CIRUS reactor before it is shut down in 2010. The Dhruva reactor will continue to operate and add about 20-25 kg/year. A second Dhruva sized reactor that is being considered would add a similar amount each year.

The most important potential increase in India's weapon grade plutonium production will come from its unsafeguarded fast breeder reactor, the PFBR, to be completed in 2010. We have estimated that it could produce about 130 kg of weapon grade plutonium each year, a four-fold increase in India's current production capability. Note that even in the absence of the U.S.-India deal, the breeder would have remained unsafeguarded and could have produced the same amount of plutonium.

India has plans for four more breeder reactors by 2020, which could produce over 500 kg a year of weapon grade plutonium. The safeguards status of these reactors has not yet been announced.

These breeders would be fuelled by India's stockpile of about 11 tons of unsafeguarded reactor-grade plutonium. This stockpile is currently increasing at about two tons/year. As part of the U.S.-India deal, India will place six of its reactors under safeguards between now and 2014 – these will be in addition to the six imported reactors that are required to be under safeguards. We have estimated that the reactors newly assigned to be safeguarded will contribute in total another four tons of unsafeguarded plutonium before they are opened for inspection. Meanwhile, the eight reactors that are designated as military and will remain unsafeguarded will contribute 1250 kg of reactor grade plutonium per year.

Without the deal, India would have sixteen unsafeguarded nuclear reactors (including five under construction and expected to begin operating in 2007-2008). They would have produced altogether 2200 kg/year of reactor-grade plutonium. India's proposed nuclear facilities separation plan will serve to reduce its annual unsafeguarded plutonium production by about 40%, to roughly 1250 kg/year. All this reactor-grade plutonium is also potentially weapon-useable.

India currently fuels thirteen heavy water reactors with a total capacity of 2990 MWe from domestic uranium. Under the deal, it will be able to fuel the eight of them that are to be safeguarded using imported uranium. Of the five heavy water reactors under construction, two are to be safeguarded, while three will be military and not open to inspection. This will give India 2350 MWe of unsafeguarded heavy water reactor capacity that it will have to fuel using domestic uranium.

We find that India's current domestic production of natural uranium of about 300 tons/year is insufficient to fuel its unsafeguarded reactors and sustain its current weapon grade plutonium and enriched uranium production, which altogether require about 475 tons a year. India has been able to escape this constraint so far by using stocks of previously mined and processed uranium. As new unsafeguarded reactors come on-line in 2007-2008, India would need altogether about 615 tons of domestic uranium per year. However, this requirement will decline from 615 tons/year to about 380 tons since India will be able to import uranium for reactors when they come under safeguards in 2010, 2012, and 2014.

To meet the increased demand, India expects to expand uranium mining. It is hoped that the proposed Nalgonda mines could produce about 150-200 tons per year, increasing the total available to about 450-500 tons a year. Assuming this happens, and as the requirement falls to 380 tons of uranium per year, India may be able to divert the additional 70-120 tons/year towards producing 60-100 kg/year of weapon grade plutonium by partially running one of its unsafeguarded power reactors at low burn up. This will require operating the reactor refueling machines at much higher rates than normal, which may limit the extent to which this is possible.

We found that it would require an extra 190 tons of natural uranium a year if an entire 200 MWe heavy water reactor were to be shifted from power production to weapon grade plutonium production. We considered the possibility of India offsetting some of this natural uranium demand by using recycled depleted uranium (containing 0.61% uranium-235) as part of the fuel for its other unsafeguarded power reactors. We found that this would reduce the natural uranium requirement to 130 tons per year, not very far from the additional 70-120 tons that may be available. A key constraint on the recycling of depleted uranium on this scale may be the operational capacity of India's reprocessing plants.

It should be noted that only the weapon grade plutonium that could be produced by the unsafeguarded power reactors (because of the availability of imported uranium) is a direct consequence of the U.S.-India deal that has been negotiated. The breeder and

production reactors would have remained unsafeguarded even if there had been no deal. Only a deal that would have brought the PFBR and all the power reactors under safeguards would have ensured that Indian fissile material production for weapons remained at about the current levels.

An expansion of fissile material stockpiles in South Asia would be at odds with the stated doctrine of both India and Pakistan of pursuing a "minimum deterrence." It has been shown that half a dozen modest Hiroshima-yield weapons, if dropped on major cities in South Asia, could kill over a million people.¹¹² This suggests that several dozen weapons would more than suffice to meet any reasonable criteria for "minimum deterrence."¹¹³ This number would permit a nuclear attack with a dozen warheads and provide for sufficient redundancy to deal with any concerns about survivability, reliability, and interception.¹¹⁴

Both India and Pakistan have already achieved the fissile material requirements for a 'minimal' arsenal and it has been argued for some time that they should end production of fissile material for weapons.¹¹⁵ Rather than pursue the option of a large expansion of their nuclear arsenals, they should choose to suspend all further production of fissile materials for weapon purposes pending the negotiation and entry into force of a Fissile Material Cutoff Treaty. This is also a necessary step in progress towards nuclear disarmament.

Appendix 1: Power Reactors in India and Pakistan

Power reactor	Туре	Gross Power (MWe)	Start-up date	Safeguards (June 2006)	Open for Safeguards
In Operation		-			
Kaiga-1	PHWR	220	16-Nov-00	Unsafeguarded	Military
Kaiga-2	PHWR	220	16-Mar-00	Unsafeguarded	Military
Kakrapar-1	PHWR	220	6-May-93	Unsafeguarded	2012
Kakrapar-2	PHWR	220	1-Sep-95	Unsafeguarded	2012
Madras-1	PHWR	170	27-Jan-84	Unsafeguarded	Military
Madras-2	PHWR	220	21-Mar-86	Unsafeguarded	Military
Narora-1	PHWR	220	1-Jan-91	Unsafeguarded	2014
Narora-2	PHWR	220	1-Jul-92	Unsafeguarded	2014
Rajasthan-1	PHWR	100	16-Dec-73	Safeguarded	Safeguarded
Rajasthan-2	PHWR	200	1-Apr-81	Safeguarded	Safeguarded
Rajasthan-3	PHWR	220	1-Jun-00	Unsafeguarded	2010
Rajasthan-4	PHWR	220	23-Dec-00	Unsafeguarded	2010
Tarapur-1	BWR	160	28-Oct-69	Safeguarded	Safeguarded
Tarapur-2	BWR	160	28-Oct-69	Safeguarded	Safeguarded
Tarapur-4	PHWR	540	12-Sep-05	Unsafeguarded	Military
Under Constructio	n				
Kaiga-3	PHWR	220	2007 (planned)	Unsafeguarded	Military
Kaiga-4	PHWR	220	2007 (planned)	Unsafeguarded	Military
Kudankulam-1	VVER	1000	2007 (planned)	Safeguarded	Safeguarded
Kudankulam-2	VVER	1000	2008 (planned)	Safeguarded	Safeguarded
Rajasthan-5	PHWR	220	2007 (planned)	Unsafeguarded	2007
Rajasthan-6	PHWR	220	2008 (planned)	Unsafeguarded	2008
Tarapur-3	PHWR	540	2007 (planned)	Unsafeguarded	Military
PFBR	Fast Breeder	500	2010	Unsafeguarded	Military

India (note: military reactors will not be open for safeguards)

Pakistan

Power reactor	Туре	Gross Power (MWe)	Start-up date	Safeguards (June 2006)	
In Operation					
Chashma-1	PWR	325	13-Jun-00	Safeguarded	
Karachi	PHWR	137	28-Nov-72	Safeguarded	
Under Construction					
Chashma-2	PWR	325	2011 (planned)	Safeguarded	

Endnotes

¹ Homi Bhabha, address to Twelfth Pugwash Conference, Udaipur, India, 27 January – 1 February, 1964, cited in George Perkovich, *India's Nuclear Bomb: The Impact on Global Proliferation*, Berkeley: University of California Press, 1999, p. 61-62.

² The U.S.-India nuclear agreement is at www.whitehouse.gov/news/releases/2005/07/20050718-6.html.

³ The politics and broader policy issues of the deal are discussed in Zia Mian and M.V. Ramana, "Wrong Ends, Means and Needs: Behind the U.S. Nuclear Deal with India," *Arms Control Today*, January/February 2006, www.armscontrol.org/act/2006_01-02/JANFEB-IndiaFeature.asp.

⁴ The Nuclear Suppliers Group member states are Argentina, Australia, Austria, Belarus, Belgium, Brazil, Bulgaria, Canada, China, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Japan, Kazakhstan, Latvia, Lithuania, Luxembourg, Malta, Holland, New Zealand, Norway, Poland, Portugal, South Korea, Romania, Russia, Slovakia, Slovenia, South Africa, Spain, Sweden, Switzerland, Turkey, Ukraine, United Kingdom, and the United States, www.nuclearsuppliersgroup.org.

⁵ President Bush and Prime Minister Singh Press Conference, New Delhi, 2 March 2006, www.whitehouse.gov/news/releases/2006/03/20060302-9.html.

⁶ "Pakistan Seeks Nuclear Deal on Par with India," *Dawn*, 8 November 2005; Khalid Hasan, "No Indian-Style Nuclear Deal for Pakistan," *Daily Times*, 7 November 2005.

⁷ Mark Hibbs, "China Favors NSG Solution on India That Facilitates Trade with Pakistan," *Nuclear Fuel*, 7 November 2005.

⁸ Mark Hibbs and Shahid-ur-Rehman, "NSG, U.S. Won't Accommodate New Pakistan-China Commerce," *Nucleonics Week*, 2 March 2006.

⁹ "Aziz Pleads for Pak-US N-Deal," *Daily Times*, 6 April 2006.

¹⁰ Shakil Sheikh, "Pakistan Vows to Maintain Credible N-deterrence," *The News*, 13 April 2006.

¹¹ "Pakistan Totally Committed to Non-Proliferation, Restraint Regime," *Associated Press of Pakistan*, 9 April 2006, www.app.com.pk/n87.htm.

¹² Some of these issues are also discussed in a recent report by Ashley Tellis, *Atoms for War*, Carnegie Endowment, 2006, www.carnegieendowment.org/files/atomsforwarrevised1.pdf.

¹³ Leonard Weiss, "Atoms for Peace," *Bulletin of the Atomic Scientists*, November/December 2003.

¹⁴ R. Chidambaram and C. Ganguly, "Plutonium and Thorium in the Indian Nuclear Programme," *Current Science*, Vol. 70, No. 1, 1996.

¹⁵ K.V. Suresh Kumar, R.P. Kapoor, P.V. Ramalingam, B. Rajendran, G. Srinivasan and K.V. Kasiviswanathan, *Fast Breeder Test Reactor, 15 Years of Operating Experience*, presented at the Technical Meeting on Operational and Decommissioning Experience with Fast Reactors, IAEA-TM-25332, IAEA, 2002, pp. 15-27.

¹⁶ B. Battacherjee, "An Overview of R&D in Fuel Cycle Activities of AHWR," 14th Indian Nuclear Society Conference, Kalpakkam, 17-19 December 2003, www.indian-nuclear-society.org.in/conf/2003/1.pdf.

¹⁷ George Perkovich, *India's Nuclear Bomb: The Impact on Global Proliferation*, Berkeley: University of California Press, 1999.

¹⁸ Nuclear Notebook, "India's Nuclear Forces, 2005," *Bulletin of the Atomic Scientists*, September/October 2005. Indian Defense ministry sources have mentioned plans for 300-400 weapons, Vivek Raghuvanshi, "India to Stay the Course on Nuke Doctrine," *Defense News*, 1 November 2004.

¹⁹ Leonard Spector, *Nuclear Proliferation Today*, Vancouver, Vintage Books, 1984, pp. 78-81.

²⁰ A.Q. Khan, "Dr A.Q. Khan Laboratories, Kahuta, Twenty Years of Excellence and National Service," *Friday Times*, 5-11 September 1996.

²¹ "Pakistan's Indigenous Nuclear Reactor Starts Up," *The Nation*, 13 April 1998.

²² The first images of construction activity at the reactor site were released by the Institute for Science and International Security, 24 July, 2006, www.isis-online.org/publications/southasia/newkhushab.pdf.

²³ Nuclear Notebook, "Pakistan's Nuclear Forces, 2001," *Bulletin of the Atomic Scientists*, January/February 2001.

²⁴ After start up, reactor power was raised to 30 MWt in February 2004 and then to 40 MWt in November 2004, "Barc's Refurbished Reactor Attains Full Power Operation," *The Hindu News Update Service*, 19 November 2004.

²⁵ Mark Hibbs, "Dhruva Operating Smoothly within Refueling, Availability Limits," *Nucleonics Week*, Vol. 33, No. 13, 1992. Brahma Chellaney, "Indian Scientists Exploring U Enrichment, Advanced Technologies," *Nucleonics Week*, Vol. 28, No. 10, 1987.

²⁶ R.C. Sharma and S.K. Agarwal, "Research Reactor: Its Refurbishment and Future Utilisation," *BARC Newsletter*, June 2004.

²⁷ Annual Report 2000, Bhabha Atomic Research Centre, 2001.

 28 This assumes a burn-up of 1000 megawatt-days per ton of heavy metal (MWd/tHM) and a plutonium content of 0.9 kg/t in the spent fuel.

²⁹ Mark Hibbs, "After 30 Years, PAEC Fulfills Munir Khan's Plutonium Ambition," *Nucleonics Week*, Vol. 41, No. 24, 15 June 2000.

³⁰ "Pakistan's Indigenous Nuclear Reactor Starts Up," *The Nation*, 13 April 1998.

³¹ Assuming a burn-up of 1000 MWd/tHM, with 0.9 g of weapon grade plutonium produced per megawatt (thermal) day of output and that the reactor operates at 70% of its capacity.

³² Joby Warrick, "Pakistan Builds Plutonium Reactor Massive Plant Underway Would Generate Material for 40-50 Nuclear Bombs a Year," *The Washington Post*, 24 July 24 2006.

³³ William J. Broad and David Sanger, "U.S. Disputes Report on New Pakistan Reactor", *The New York Times*, 3 August 2006; Joby Warrick, "Pakistani Reactor not as Significant as was Reported," *The Washington Post*, 5 August 2006.

³⁴ We assume that both CIRUS and Dhruva (since 1988) have had an average annual availability factor of 70%, except for CIRUS between 1991-1997, when we assume a 60% availability factor because of reported problems with aging, R.C. Sharma and S.K. Agarwal, "Research Reactor: Its Refurbishment and Future Utilisation," *op. cit.* We assume Khushab has been operating since 1998 with a 70% availability factor.

³⁵ About 35 kg of low burn-up PHWR plutonium may have been produced by the end of 2004; ISIS, *India's Military Plutonium Inventory, End 2004*, www.isis-online.org/global_stocks/end2003/india_military_plutonium.pdf.

³⁶ "Third Reprocessing Plant Opened at Kalpakkam," Nuclear News, May 1996.

³⁷ Z. Mian and A.H. Nayyar, "An Initial Analysis of 85-Krypton Production and Dispersion from Reprocessing in India and Pakistan," *Science & Global Security*, Vol. 10, No. 3, 2002.

³⁸ ibid.

³⁹ Milton Benjamin, "Pakistan Building Secret Nuclear Plant," *The Washington Post*, 23 September 1980.

⁴⁰ "Pakistan is Reprocessing Fuel Rods to Create Plutonium Nuclear Weapons," *CBS News Transcripts* (6:30 PM ET), 16 March, 2000.

⁴¹ Z. Mian and A.H. Nayyar, "An Initial Analysis of 85-Krypton Production and Dispersion from Reprocessing in India and Pakistan," *op. cit.*

⁴² This device is described as "the Indian version of the Fat Man", the U.S. weapon used against Nagasaki, that contained about 6 kg of plutonium; Raj Chengappa, *Weapons of Peace: The Secret Story of India's Quest to be a Nuclear Power*, New Delhi: Harper Collins, 2000, p. 195. For a description of the Indian device, see pp. 175-195.

⁴³ According to Bhabha Atomic Research Centre, the total weight of fuel in the Purnima I reactor is 21.6 kg of plutonium oxide. There is a claim that this plutonium was recovered and used in the 1974 nuclear test because of a dearth of plutonium. See Raj Chengappa, *Weapons of Peace: The Secret Story of India's Quest to be a Nuclear Power*, New Delhi: Harper Collins, 2000, p. 185. We don't take that possibility into account in our estimate of plutonium consumption. By 1970, spent fuel from CIRUS containing over 60 kg of plutonium would have been cool enough to be reprocessed. The amount of plutonium in the Fast Breeder Test Reactor core is from Mark Hibbs, "Kalpakkam FBR to Double Core, Load First Thorium-232 Blanket," *Nucleonics Week*, Vol. 38, No. 48, 1997.

⁴⁴ We emphasize that all of this plutonium may not have been separated. ISIS estimates India may have accumulated 575 kg of weapon grade plutonium as of the end of 2004; see ISIS, *India's Military Plutonium Inventory, End 2004, op.cit.*

⁴⁵ J. Carson Mark, "Explosive Properties of Reactor-Grade Plutonium," *Science & Global Security*, Vol. 4, No. 1, 1993.

⁴⁶ Assuming a 7000 MWd/tHM burn-up, thermal efficiency of 0.29, MCNP calculations by Alexander Glaser and Jungmin Kang show the fresh spent fuel contains about 3.8 kg or plutonium per ton of heavy metal (tHM). As the spent fuel cools, its Pu-241 decays with a 14-year half-life and the overall plutonium content therefore decreases by about 1% over five years to 3.75 kg per ton of spent fuel. Indian PHWRs now have an average burn-up of 7000 MWd/tHM, K.C. Sahoo and S. A. Bhardwaj, *Fuel Performance in Water Cooled Nuclear Reactors*, 14th Indian Nuclear Society Annual Conference, Kalpakkam, December 17-19, 2003, www.indian-nuclear-society.org.in/conf/2003/12.pdf.

⁴⁷ Indian PHWR spent fuel is reported to be cooled for a minimum of 430 days before being sent to a reprocessing facility; P.K. Dey, *An Indian Perspective for Transportation and Storage of Spent Fuel*, 26th International Meeting on Reduced Enrichment for Research and Test Reactors, Vienna, 7-12 November 2004. It may be stored for 5 to 10 years before being reprocessed; V.K. Chaturvedi, *Economics of Fuel Cycles of PHWRs, VVERS and TAPS BWRs*, presented at the 14th Indian Nuclear Society Annual Conference, Kalpakkam, 17-19 December 2003, www.indian-nuclear-society.org.in/conf/2003/2.pdf.

⁴⁸ Theoretically, all of this spent fuel could have been reprocessed since, until the past few years, the total reprocessing plant design capacity had been greater than spent fuel produced. But for a reasonable capacity factor, it seems unlikely that all of the spent fuel could have been reprocessed.

⁴⁹ Mark Hibbs, "PREFRE Plant Used Sparingly, BARC Reprocessing Director Says," *Nuclear Fuel*, Vol. 17, No. 7, 1992; Mark Hibbs, "Tarapur-2 to Join Twin BWR in Burning PHWR Plutonium," *Nuclear Fuel*, Vol. 20, No. 20, 1995.

⁵⁰ Currently safeguarded reactors are Tarapur 1&2 and Rajasthan 1&2. The Tarapur reactors have a thermal efficiency of 31.2%, an average fuel burn-up of 19,500 MWd/tHM, and produce 8 kg/tHM of plutonium.

⁵¹ K.C. Sahoo and S. A. Bhardwaj, Fuel Performance in Water Cooled Nuclear Reactors, op. cit.

⁵² Electricity production data for Kanupp and Chashnupp are not yet available for May 2006. We assume that the output in May 2006 was the same as in the previous month.

⁵³ P.K. Dey, *Spent Fuel Reprocessing: an Overview*, 14th Indian Nuclear Society Annual Conference, Kalpakkam, 17-19 December 2003, www.indian-nuclear-society.org.in/conf/2003/14.pdf.

⁵⁴ The "spark plug" in the fusion stage of a thermonuclear weapon can use highly enriched uranium or plutonium.

⁵⁵ This assumes 0.3 grams of uranium-235 per shaft-horse power year and a ten year life time for the ATV reactor, M. V. Ramana, "An Estimate of India's Uranium Enrichment Capacity," *Science & Global Security*, Vol. 12, 2004, pp. 115-124. The growth in enrichment capacity over time is assumed to be linear.

⁵⁶ Image from David Albright and Susan Basu, *India's Gas Centrifuge Program: Stopping Illicit Procurement and the Leakage of Technical Centrifuge Know-How*, ISIS, 10 March 2006, www.isis-online.org/publications/southasia/indianprocurement.pdf.

⁵⁷ From 3000-5000 SWU/year in 1986 to 9000-15,000 SWU/year in 1990-1991 and 13,000 -22,000 SWU/year by the late 1990s, David Albright, Frans Berkout and William Walker, *Plutonium and Highly Enriched Uranium 1996*, New York: Oxford University Press, 1997, p. 278.

⁵⁸ ISIS Estimates of Unirradiated Fissile Material in De Facto Nuclear Weapon States, Produced in Nuclear Weapon Programs, 30 June 2005; www.isis-online.org/global_stocks/end2003/de_facto_nws.pdf.

⁵⁹ A capacity of about 20,000 SWU/year would produce 100 kg/year of weapon grade uranium.

⁶⁰ The enrichment halls were identified in a September 2005 U.S. State Dept. briefing, *Iran's Nuclear Fuel Cycle Facilities: A Pattern of Peaceful Intent?* www.globalsecurity.org/wmd/library/report/2005/iran-fuel-cycle-brief_dos_2005.pdf.

⁶¹ U.S. Department of Commerce, Bureau of Export Administration, 15 CFR Part 742 and 744, *Federal Register*, Vol. 63, No. 223, 19 November 1998; www.chaos.fedworld.gov/bxa/whatsnew.cgi/in-pak.pdf.

⁶² This is consistent with estimates of Pakistan possibly having 24-48 weapons in 2001, given the additional enriched uranium produced since then; Nuclear Notebook, "Pakistan's Nuclear Forces, 2001," *Bulletin of The Atomic Scientists*, January/February 2001.

⁶³ Suo Moto Statement by Prime Minister Dr. Manmohan Singh on Discussions on Civil Nuclear Energy Cooperation with the US: Implementation of India's Separation Plan, www.indianembassy.org/newsite/press_release/2006/Mar/24.asp.

⁶⁴ Implementation of the India-United States Joint Statement of July 18, 2005: India's Separation Plan, www.mea.gov.in/treatiesagreement/2006/11ta1105200601.pdf.

⁶⁵ Fuel cycle facilities to be safeguarded are Uranium Oxide Plant (Block A), Ceramic Fuel Fabrication Plant (Pelletizing) (Block A), Ceramic Fuel Fabrication Plant (Assembly) (Block A), Enriched Uranium Oxide Plant, Enriched Fuel Fabrication Plant, and Gadolinia Facility. There seem to be other fuel production facilities at the Nuclear Fuel Complex that will remain unsafeguarded, such as the New Uranium Oxide Fuel Plant; www.aerb.gov.in/t/annrpt/anr99/srnp.htm, and T.S. Subramanian, "Fuelling Power," *Frontline*, 16-29 March 2002, www.frontlineonnet.com/fl1906/19060840.htm.

⁶⁶ Implementation of the India-United States Joint Statement of July 18, 2005: India's Separation Plan, op. cit.

⁶⁷ The PREFRE reprocessing plant has had safeguards in place when running spent fuel from Rajasthan 1 & 2.

⁶⁸ Nuclear Power Corporation of India, www.npcil.nic.in/PlantsInOperation.asp.

⁶⁹ Planning Commission, Government of India, *Mid -Term Appraisal of the Tenth Five Year Plan (2002-2007)*, Chapter 10, pp. 229-230, www.planningcommission.nic.in/midterm/cont_eng1.htm,.

⁷⁰ Sanjeev Srivastava, "Indian P.M. Feels Political Heat", *British Broadcasting Corporation*, 26 July 2005, www.news.bbc.co.uk/go/pr/fr/-/2/hi/south_asia/4715797.stm.

⁷¹ A. Gopalakrishnan, "Indo-US Nuclear Cooperation: A Nonstarter?" *Economic and Political Weekly*, 2 July 2005.

⁷² "The Nuclear Fuel Complex Chairman, R. Kalidas, has said that India's current annual uranium requirement is on the order of 400-500 tons of uranium oxide (340-424 t/U)." *RWE Nukem*, December 2004, p. 24.

⁷³ We assume that India mines and mills 2000 tons of uranium ore per day, 300 days per year, at an average ore grade of 0.05% uranium. The actual ore grade being mined may be only 0.03%, since the better quality ore has already been used. The Jaduguda mill has a processing capacity of about 2,100 tons ore/day and may only have been producing 230 tons per year, *RWE Nukem*, December 2004, p. 24. An official report notes that one mill is under construction at Banduhurang, Jharkhand, and was expected to be completed in mid-2006, and that work is underway on another at Turamdih, to have a capacity of 3000 tons per day of ore (about 450 tons/year of uranium). *Project Implementation Status Report of Central Sector Projects Costing Rs. 20 Crore and Above* (October-December 2005), Infrastructure and Project Monitoring Division, Government of India April 2006, www.mospi.nic.in/pi_status_report_oct_dec2005.pdf. The Turamdih plant is expected to be commissioned by December, 2006, "UCIL Exploring Uranium Ore in Chattisgarh, Rajasthan, Karnataka", *PTI*, 5 June 2006.

⁷⁴ "Interview with R. Kalidas", RWE Nukem, December 2004.

⁷⁵ Xavier Dias, "DAE's Gambit," *Economic and Political Weekly*, 6 August 2005.

⁷⁶ T.S. Subramanian, "Uranium Crisis," *Frontline*, 13 January 2006.

⁷⁷ At Nalgonda, the Uranium Corporation of India expects to mine 1250 tons of uranium ore per day, "Environmental Clearance for Uranium Mining," *Hindustan Times*, 12 December 2005. Assuming an average grade of 0.04-0.05%, this implies 150-187.5 tons/year of uranium. The proposed mine at Kadapa is intended to produce 250 tons a year; MECON Limited (Ranchi), *EIA/EMP Report For Tummalapalle Uranium Project*, Uranium Corporation of India Ltd, 2006. As noted above, India expects a large increase in ore processing capacity that can more than handle this increased production.

⁷⁸ T.S. Subramanian and Suhrid Sankar Chattopadhyay, "Back To Singhbhum," *Frontline*, 13 January 2006.

⁷⁹ This includes under construction PHWRs as they come into operation and excludes PHWRs once they come under safeguards and can be fuelled by imported uranium. It also excludes CIRUS and Dhruva and uranium demand from the enrichment program, which adds up to about 45 tons per year.

⁸⁰ K Subrahmanyam, "India and the Nuclear Deal," *Times of India*, 12 December 2005.

⁸¹ "BARC Planning New Dhruva-Type Reactor," *Hindustan Times*, 28 April 1999.

⁸² Mark Hibbs, "Replication of Dhruva Reactor Proposed for Next Indian Economic Plan," *Nuclear Fuel*, 8 May 2006.

⁸³ This possibility is suggested by Albright, Berkhout and Walker, *op. cit.*, p.267. In normal operation, a 220 MWe PHWR refueling machine would need to change 8 fuel bundles a day. A typical refueling machine apparently requires 2-3 hours to change 4-8 fuel bundles, see e.g. *CANDU Fundamentals*, www.canteach.candu.org/library/20040700.pdf, p. 179. For 1000 MWd/tHM burn up such refueling would have to be repeated seven times a day.

⁸⁴ A. H. Nayyar, A. H. Toor, and Z. Mian, "Fissile Material Production in South Asia," *Science & Global Security*, Vol. 6, No. 2, 1997, pp. 189-203.

⁸⁵ A 220 MWe power reactor operating at 1000 MWd/tHM burn-up would require a seven times higher refueling rate than at its normal, 7000 MWd/tHM, operation. This appears to be possible given the on-line refueling capabilities of these reactors.

⁸⁶ Uranium consumption is about 222 tons/year in production mode versus 32 tons in power mode.

⁸⁷ If the 170 MWe Madras 1 reactor were used to produce weapons plutonium, its annual uranium requirement would be the 170 tons, and consequently the total uranium requirement for that and the other seven unsafeguarded PHWRs would be reduced to 485 tons, instead of 528.

⁸⁸ Baltej Singh, P.D. Krishnani and R. Srivenkatesan, *Use of Depleted Uranium in Equilibrium Core of Standard PHWRs: A Complete Study*, 16th Annual Conference of the Indian Nuclear Society, 2005, www.indian-nuclear-society.org.in/conf/2005/pdf_3/topic_1/T1_CP5_Baltej_Singh.pdf. The depleted

uranium requirement is twice that of the natural uranium it replaces, in order to maintain reactor performance.

⁸⁹ These 130 tons are the difference between the 467 tons in Row 4 and the 338 tons in Row 5 of the Table.

⁹⁰ Baltej Singh, P.D. Krishnani and R. Srivenkatesan, Use of Depleted Uranium in Equilibrium Core of Standard PHWRs: A Complete Study, op. cit. It has been studied for Tarapur 3&4; V.K. Chaturvedi, Economics of Fuel Cycles of PHWRs, VVERS and TAPS BWRs, op.cit.

⁹¹ Depleted uranium fuel is manufactured at the Nuclear Fuel Complex using uranium recovered by the reprocessing plant which handles spent fuel from CIRUS and Dhruva; C. Ganguly, *Manufacturing Experience Of PHWR and LWR Fuels*, 14th Indian Nuclear Society Conference, Kalpakkam, 17-19 December 2003, www.indian-nuclear-society.org.in/conf/2003/8.pdf. In a PHWR at a burn-up of 1000 MWd/tHM, the 0.7% U-235 in natural uranium fuel is reduced to 0.6% U-235, while fuel with a burn up of 7000 MWd/tHM contains 0.2% uranium-235.

⁹² As of 2003, the Nuclear Fuel Complex at Hyderabad had produced about 76 tons of depleted uranium fuel, *ibid*.

⁹³ George Perkovich, *op. cit.*, pp. 428-430, claims "knowledgeable Indian sources confirmed" use of nonweapon grade plutonium in one of the 1998 tests; Raj Chengappa *op. cit.* pp. 41-418, claims "one of the devices.. used reactor grade or dirty plutonium."

⁹⁴ J. Carson Mark, "Explosive Properties of Reactor-Grade Plutonium," *Science & Global Security*, Vol. 4, No. 1, 1993, pp. 111-124.

⁹⁵ The plutonium produced by an Indian PHWR at a burn-up of 7000 MWd/tHM, typical of power generation, is about 72% Pu-239 and over 22% Pu-240, while at a burn-up used for weapons plutonium production of 1000 MWd/tHM, the plutonium produced is almost 95% Pu-239 and about 5% Pu-240.

⁹⁶ U.S. Department of Energy, *Nonproliferation and Arms Control Assessment of Weapons-Usable Fissile Material Storage and Excess Plutonium Disposition Alternatives*, DOE/NN-0007, Washington, D.C., January 1997, pp. 37-39, www.ccnr.org/plute.html.

⁹⁷ India's CIRUS and Dhruva and its heavy water power reactors produce tritium as a normal byproduct of their operation.

⁹⁸ George Perkovich, op. cit., p. 427.

⁹⁹ Raj Chengappa, op. cit. pp. 416-418.

¹⁰⁰Pallava Bagla, "On the Record: Anil Kakodkar," Indian Express, 8 February 2006.

¹⁰¹ *ibid*.

¹⁰² The four reactors at Kaiga have also all been designated as military. This suggests that this site could eventually host a reprocessing plant and unsafeguarded breeder reactor, similar to the arrangement at Madras.

¹⁰³ Baldev Raj, *A Perspective on Science and Technology of Fast Breeder Reactors*, Indira Gandhi Centre for Atomic Research, www.igcar.ernet.in/igc2004/manuscript.ppt#376,90,Slide 90.

¹⁰⁴ India already cuts fuel assemblies into large sections prior to the chopping into small pieces that accompanies reprocessing. This is done for instance with spent fuel assemblies from Dhruva; M.S. Rajkumar, "Remote Technologies for Handling Spent Fuel," in *Remote Technology in Spent Fuel Management*, proceedings of an Advisory Group meeting, Vienna, 22-25 September 1997, IAEA TECDOC-1061, 1999, pp. 35-48.

¹⁰⁵ India plans a series of "FBR parks", each of which will have two to four FBRs, a dedicated reprocessing plant and a fuel fabrication plant, including at Kalpakkam; T.S. Subramanian, "A Milestone at Kalpakkam," *Frontline*, 6 November 2004.

¹⁰⁶ Design of Prototype Fast Breeder Reactor, Indira Gandhi Centre for Atomic Research, December 2003, www.igcar.ernet.in/broucher/design.pdf. The plutonium content of the fuel is reported to be 20.7% in the inner core and 27.7% in the outer core, with approximately 91% of the total power generated in the core; D.G. Roychowdhury, P.P.Vinayagam, S.C. Ravichandar, and M.V. Sridhar Rao, "Thermal Hydraulic Design of PFBR Core," *LMFR Core Thermohydraulics: Status and Prospects*, IAEA-TECDOC-1157, June 2000, www.iaea.org/inis/aws/fnss/fulltext/1157_3.pdf.

¹⁰⁷ "National Presentations: India," in *Primary Coolant Pipe Rupture Event in Liquid Metal Cooled Reactors*, IEA TECDOC-1406, August 2004, www.iaea.org/inis/aws/fnss/fulltext/te_1406_web.pdf. The breeding ratio is the mass of fissile isotopes produced by the reactor divided by the amount of fissile material consumed. It appears the PFBR breeding ratio was reduced to 1.049 after a redesign of the radial blanket. It had previously been given as 1.07; S.M. Lee, S. Govindarajan, R. Indira, T. M. John, P. Mohanakrishnan, R. Shankar Singh and S. B. Bhoje, "Conceptual Design of PFBR Core," *Conceptual Designs of Advanced Fast Reactors*, IAEA-TECDOC-907, 1996, www.iaea.org/inis/aws/fnss/fulltext/28014311.pdf.

¹⁰⁸ We assume roughly two-thirds of all fissions in the inner and outer cores are from Pu-239 nuclei, 13.5% are of Pu-241, and 1.5% are of U-235. For the inner and outer cores, we assume generic capture to fission ratios for Pu-239, Pu-241, and U-235 of 0.25, 0.1, and 0.25 respectively; see Alan E. Waltar and Albert B. Reynolds, *Fast Breeder Reactors*, New York, Pergamon Press, 1981, pp. 123-134. The actual values for the PFBR may be somewhat different.

¹⁰⁹ We assume a core breeding ratio of 0.68 and an overall breeding ratio of 1.05. Note that Japan's Monju and the cancelled U.S. Clinch River fast breeder reactors had core breeding ratios of 0.6-0.75; S. Usami, et. al., *Reaction Rate Distribution Measurement and the Core Performance Evaluation in the Prototype FBR Monju*, (last updated July 5, 2005), www.aec.jst.go.jp/jicst/NC/tyoki/sakutei2004/sakutei17/siryo41.pdf. For this range of core breeding ratios, the PFBR would produce about 164-109 kg of weapon grade plutonium. Preliminary results from MCNP calculations on PFBR plutonium production support this range of plutonium production, Alexander Glaser private communication.

¹¹⁰ T. S. Subramanian, "A Milestone at Kalpakkam," *Frontline*, 6-19 November 2004, www.hinduonnet.com/fline/fl2123/stories/20041119003210200.htm.

¹¹¹ The spent fuel from the breeder would need to cool before it could be reprocessed and the plutonium recycled, and so an initial plutonium stock for two cores, about four tons in total, is required for each breeder.

¹¹² Matthew McKinzie, Zia Mian, A. H. Nayyar and M. V. Ramana, "The Risks and Consequences of Nuclear War in South Asia," in Smitu Kothari and Zia Mian, eds., *Out of the Nuclear Shadow*, Delhi, Lokayan and Rainbow Publishers, and London, Zed Books, 2001.

¹¹³ R. Rajaraman, "Save the Indo-US Agreement," *Hindustan Times*, 5 November 2005.

¹¹⁴ R. Rajaraman, "Cap the Nuclear Arsenal Now," *The Hindu*, 25 January 2005; R. Rajaraman, *Towards De-Nuclearisation of South Asia*, 2nd Pugwash Workshop on South Asian Security, Geneva, Switzerland, 16-18 May 2003.

¹¹⁵ Zia Mian and M. V. Ramana, "Beyond Lahore: From Transparency to Arms Control," *Economic and Political Weekly*, 17-24 April, 1999; Zia Mian, A.H. Nayyar and M.V. Ramana, "Making Weapons, Talking Peace: Resolving The Dilemma of Nuclear Negotiations," *Economic and Political Weekly*, 17 July 2004; R. Rajaraman, "India-U.S. Deal and the Nuclear Ceiling," *The Hindu*, 10 September, 2005; R. Rajaraman, "Nurturing the Indo-US Agreement," in *The Debate on the Indo –US Nuclear Cooperation*, Delhi Policy Group and Bibliophile South Asia, 2006.

About the Authors and Acknowledgements

Zia Mian is a research scientist with the Program on Science and Global Security and directs its Project on Peace and Security in South Asia. He is a staff member of the IPFM.

A.H. Nayyar is a visiting research fellow at the Sustainable Development Policy Institute, Islamabad. He retired from the faculty of the Department of Physics, Quaid-i-Azam University, Islamabad, in 2005. He has been active in Pakistan's nuclear-weapon policy debate since 1997 and a regular summer visitor with Princeton's Program on Science and Global Security since 1998. Currently, he is President of Pakistan's Peace Coalition and the Co-convener of Pugwash Pakistan. He shares the Pakistani seat of the IPFM with Pervez Hoodbhoy.

R. Rajaraman is Professor Emeritus in the School of Physical Sciences, Jawaharlal Nehru University, New Delhi. He is a fellow of both the Indian Academy of Science and the Indian National Science Academy. He has been contributing articles to India's nuclear-weapons debate since 1970 and has been a regular summer visitor with Princeton's Program on Science and Global Security since 2000. He shares the Indian seat of the IPFM with M.V. Ramana.

M.V. Ramana is a physicist by training and is currently a fellow at the Centre for Interdisciplinary Studies in Environment and Development, Bangalore. He was previously a member of the research staff of Princeton's Program on Science and Global Security. He is associated with India's Coalition for Nuclear Disarmament and Peace as well as Abolition-2000, a global network to abolish nuclear weapons. He is co-editor of *Prisoners of the Nuclear Dream* (New Delhi: Orient Longman, 2003). He shares the Indian seat of the IPFM with R. Rajaraman.

This work was originally prepared as a report for the International Panel on Fissile Materials. The authors are grateful to the IPFM for allowing a revised version to be submitted to the journal, *Science & Global Security*. It appeared in Vol. 14, Nos. 2-3, 2006.

The authors are happy to acknowledge discussions with Frank von Hippel and Harold Feiveson, and close collaboration with Alexander Glaser. They wish to thank the Program on Science and Global Security for its generous support and hospitality and to note useful comments by the reviewers for *Science & Global Security*.

A report published by

The International Panel on Fissile Materials (IPFM) www.fissilematerials.org

> Program on Science and Global Security Princeton University 221 Nassau Street, 2nd Floor Princeton, NJ 08542, USA