






Global Fissile Material Report 2010��0

��

Figure B.6. Plutonium concentration, effective 
production rate, and plutonium-239 fraction for a 
CANDU reactor. These simulations are based on the 

19-pin-per-bundle design shown in Figure B.4 (left). 
Note that CANDU reactors produce plutonium more 
effectively than some dedicated reactors considered.
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(2), Romania (2), and Pakistan (1). Information on number of operational reactors from www.iaea.
org/programmes/a2, retrieved 7 September 2010. See also the CANDU Owners Group (COG, www.
candu.org) for more details.

840.   Zhiwen Xu, Design Strategies for Optimizing High Burnup Fuel in Pressurized Water Reactors, Ph.D. thesis, 
Massachusetts Institute of Technology, January 2003; and Z. Xu, P. Hejzlar, M. J. Driscoll, and M. S. 
Kazimi, An Improved MCNP-ORIGEN Depletion Program (MCODE) and its Verification for High Burnup 
Applications, PHYSOR, Seoul, October 7 – 10, 2002. MCODE is used with the kind permission of its 
author.

841.   MCNP—A General Monte Carlo N-Particle Transport Code, Version 5, LA-UR-03-1987, X-5 Monte Carlo 
Team, Los Alamos National Laboratory, April 2003, revised March 2005; A. G. Croff, A User’s Manual 
for the ORIGEN2 Computer Code, ORNL/TM7175, Oak Ridge National Laboratory, July 1980; and S. 
Ludwig, Revision to ORIGEN2, Version 2.2, Transmittal Memo, 23 May 2002.

842.   Note that this ratio is taken for the actual (not the initial) mass of uranium present in the fuel for 
any given burnup level.
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Program on Science and Global Security – Princeton University

Harold Feiveson is a Senior Research Scientist and Lecturer in Princeton University’s 
Woodrow Wilson School of Public and International Affairs. He has a Ph.D. in public 
affairs from Princeton University (1972). Feiveson is the editor of the journal Science & 
Global Security. His research focus has been on nuclear arms control and nuclear weap-
ons proliferation. With Frank von Hippel, he co-founded and co-directed the Program 
on Science and Global Security until July 2006. He was a lead author of the overview 
chapter.

Alexander Glaser is an Assistant Professor jointly in the Woodrow Wilson School of 
Public and International Affairs and in the Department of Mechanical and Aerospace 
Engineering (MAE) at Princeton University. He directs the Nuclear Futures Laboratory 
in MAE. Glaser received his Ph.D. in physics (2005) from Darmstadt University of Tech-
nology in Germany. He is on the Science and Security Board of the Bulletin of the Atomic 
Scientists and an Associate Editor of Science & Global Security. He was a lead author of the 
chapters on stocks, France, and the United Kingdom, the lead author of Appendix B,  
and contributed to the chapter on Israel.

Zia Mian is a Research Scientist in Princeton University’s Program on Science and 
Global Security and directs its Project on Peace and Security in South Asia. He has a 
Ph.D. in physics (1991) from the University of Newcastle upon Tyne. His research inter-
ests are in nuclear-weapon and nuclear-energy policy in South Asia. He is an Associate 
Editor of Science & Global Security. He was a lead author of the overview chapter and the 
chapters on stocks and Pakistan.

Pavel Podvig (representing Russia on the IPFM with Anatoli Diakov) works part-time 
for Princeton managing the IPFM blog “Fissile Materials.” He is currently an indepen-
dent analyst based in Geneva also running his own project, “Russian Nuclear Forces.” 
During 2004 – 10, Podvig was at the Center for International Security and Cooperation 
at Stanford University. Previously, he was a visiting researcher at Princeton and a Senior 
Researcher at the Center for Arms Control Studies (CACS) at the Moscow Institute of 
Physics and Technology. He led the CACS project that produced the book, Russian Stra-
tegic Nuclear Forces (MIT Press, 2001). He was the lead author of the chapter on Russia’s 
highly enriched uranium.

IPFM Members and Other Contributors to this Report 

IPFM Members
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M. V. Ramana (representing India on the IPFM with R. Rajaraman) is currently a 
Research Scholar jointly with Princeton University’s Program on Science and Global 
Security and the Nuclear Futures Laboratory. He has a Ph.D. in physics (1994) from Bos-
ton University; has held research positions at the University of Toronto, Massachusetts 
Institute of Technology, and Princeton University; and has taught at Boston University, 
Princeton University, and Yale University. His research has focused on India’s nuclear 
energy and weapon programs. He was the lead author of the chapter on India.

Frank von Hippel (IPFM Co-Chair) is Professor of Public and International Affairs at 
Princeton University’s Woodrow Wilson of Public and International Affairs. He has a 
Ph.D. in nuclear physics (1962) from Oxford University. He co-founded Princeton’s Pro-
gram on Science and Global Security with Feiveson. He has worked on fissile material 
policy issues for the past 35 years, including contributing to: ending the U.S. program 
to foster the commercialization of plutonium breeder reactors; convincing the U.S. and 
Soviet Union to embrace the idea of a Fissile Material Production Cutoff Treaty; launch-
ing the U.S.-Russian cooperative nuclear materials protection, control and accounting 
program; and broadening efforts to eliminate the use of HEU in civilian nuclear reac-
tors worldwide. He was a lead author of the overview chapter and the lead author of the 
chapters on the United States and the non-weapon states.

International Participants

James Acton (United Kingdom) is an associate in the Nonproliferation Program at 
the Carnegie Endowment for International Peace. He co-authored the Adelphi Paper, 
Abolishing Nuclear Weapons, and co-edited the follow-up book, Abolishing Nuclear Weap-
ons: A Debate (both with George Perkovich). Prior to joining the Carnegie Endowment 
in October 2008, Acton was a lecturer at the Centre for Science and Security Studies 
in the Department of War Studies at King’s College London and was the science and 
technology researcher at the Verification Research, Training and Information Centre 
(VERTIC), where he was a participant in the UK-Norway dialogue on verifying the dis-
mantlement of warheads. He holds a Ph.D. in theoretical physics from the University of 
Cambridge. He was a lead author of the chapter on the United Kingdom. 

Anatoli Diakov (Moscow, Russia, shared membership with Podvig) is a Professor of 
Physics at the Moscow Institute of Physics and Technology (Ph.D. in 1975) and, since 
1991, the Director of its Center for Arms Control Studies. Diakov has written papers on 
nuclear arms reductions, the history of Russia’s plutonium production, disposition op-
tions for excess plutonium, and the feasibility of converting Russia’s icebreaker reactors 
from HEU to LEU as well as on many other topics relating to nuclear arms control and 
disarmament. He was the lead author of the chapter on Russia’s plutonium.

Jean du Preez (South Africa) is Chief, External Relations and International Coopera-
tion of the Comprehensive Nuclear-Test-Ban Treaty Organization in Vienna. Previously, 
he was Director of the International Organizations and Non-proliferation Program of 
the Monterey Institute for International Studies’ Center for Non-proliferation Studies 
and, before that, served for 17 years in the South African Ministry of Foreign Affairs, 
including as Deputy-Director for non-proliferation and disarmament and as a Senior 
Political Counselor for Disarmament Affairs at South Africa’s Permanent Mission to the 
United Nations. During that time, he represented his country at several international 
negotiating meetings, including the 1995 and 2000 NPT Review Conferences.
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José Goldemberg (São Paolo, Brazil) has a Ph.D. in nuclear physics (1954). He was 
Rector of the University of São Paolo (1986 – 90), Federal Minister of Science and Tech-
nology (1990 – 91), Federal Minister of Education (1991 – 92) and Minister of Environ-
ment of São Paolo (2002 – 2006). He was the first IPFM co-chair with von Hippel, step-
ping down in 2007. While Brazil‘s Minister of Science and Technology, he persuaded 
President Collor de Mello to end Brazil‘s nuclear-weapon program, which led Argentina 
to shut its program down as well, with monitoring by a joint Argentine-Brazil inspec-
torate. Goldemberg is best known for his work on global energy and environmental 
issues. He was a co-recipient of Sweden’s Volvo Environmental Prize in 2000, the re-
cipient of the Blue Planet Prize of Japan in 2008, and the winner of the Trieste Science 
Prize in 2010.

Pervez Hoodbhoy (Islamabad, Pakistan, shared membership with Nayyar) in 2010 
became emeritus Professor of Physics at Quaid-e-Azam University, Islamabad. He holds 
a Ph.D. in nuclear physics (1978) from MIT and is the recipient of the Abdus Salam 
Prize for Mathematics, the Baker Award for Electronics, Faiz Ahmad Faiz Prize for con-
tributions to education in Pakistan, and the UNESCO Kalinga Prize for the populariza-
tion of science. He has been a Visiting Professor at MIT, Carnegie Mellon University, 
the University of Maryland, and the Stanford Linear Accelerator. He is a member of the 
Pugwash Council, and a sponsor of The Bulletin of the Atomic Scientists.

Martin B. Kalinowski (Hamburg, Germany, shared membership with Schaper) is a 
Professor and Director of the Carl-Friedrich von Weizsäcker Center for Science and Peace 
Research at the University of Hamburg, Germany. He holds a Ph.D. in nuclear physics 
(1997) from Darmstadt University of Technology, Germany, and was a member of the 
Interdisciplinary Research Group on Science, Technology, and Security (IANUS) at that 
University. He served in the Provisional Technical Secretariat of the Preparatory Com-
mission for the Comprehensive Nuclear-Test-Ban Treaty Organization in Vienna, Austria 
(1998 – 2004). His research agenda deals with novel measurement technologies as well as 
nuclear and meteorological modeling of atmospheric radioactivity as a means to detect 
clandestine nuclear activities such as plutonium separation and nuclear testing. 

Jungmin Kang (Seoul, South Korea) has a Ph.D. in Nuclear Engineering from  
Tokyo University (1999) and is currently a visitor with the Korea Studies program at 
the Paul H. Nitze School of Advanced International Studies, Johns Hopkins University. 
He was the lead South Korean analyst in the MacArthur-Foundation-funded East-Asia  
Science-and-Security Initiative. He served as an advisor to South Korea’s National Secu-
rity Council on North Korean nuclear issues during 2003 and on South Korea’s Presi-
dential Commission on Sustainable Development, where he advised on nuclear energy 
policy. Kang has co-authored articles on radioactive-waste management, spent-fuel 
storage, the proliferation-resistance of closed fuel cycles, plutonium disposition and 
the history of South Korea’s explorations of a nuclear-weapon option. 

Patricia Lewis (Ireland and United Kingdom) has a Ph.D. in nuclear physics (1981) 
and is the Deputy Director and Scientist-in-Residence of the James Martin Center for 
Nonproliferation Studies at the Monterey Institute of International Studies. Previously, 
she served as Director of the United Nations Institute for Disarmament Research (UNI-
DIR) and as founding Director of the Verification Technology and Information Centre 
(VERTIC) in London. Dr. Lewis was an Advisor to the International Commission on 
Nuclear Nonproliferation and Disarmament established by the governments of Austra-
lia and Japan (2008 – 09); a Commissioner on the Weapons of Mass Destruction Com-
mission, chaired by Dr. Hans Blix (2004 – 06); and a Member of the Tokyo Forum for 
Nuclear Nonproliferation and Nuclear Disarmament (1998 – 99).
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Li Bin (Beijing, China) is a Professor of International Studies and Director of the Arms 
Control Program in the Institute of International Studies of Tsinghua University. He 
received his Ph.D. from China’s Academy of Engineering Physics (China’s nuclear-
weapon-theory and technical nuclear-arms-control institute). Within the Academy’s 
Institute of Applied Physics and Computational Mathematics (IAPCM), he became in 
1996 Director of the Arms Control Division and the Executive Deputy Director of the 
Program for Science and National Security Studies. He supported the Chinese team 
negotiating the Comprehensive Test Ban Treaty and attended the last round of negotia-
tions as a technical advisor to the Chinese delegation.

Yves Marignac (Paris, France, shared membership with Schneider) is Executive Di-
rector of WISE-Paris, an energy-information agency, which he joined in 1997 after 
four years shared between academic research in Paris-XI University, applied studies in 
the French Atomic Energy Commission (CEA), and a position at the nuclear company 
STMI. In 1999 – 2000, he participated in the only independent economic evaluation 
of France’s nuclear sector and its reprocessing policy. This study was commissioned 
by Prime Minister Jospin and resulted in what became known as the Charpin-Dessus-
Pellat report. He also contributed to the 2001 report to the European Parliament’s Sci-
entific and Technological Option Assessment Panel on reprocessing plant discharges. 
In 2005 – 06, he was Scientific and Technical Advisor to the commission preparing 
France’s public debate on the new European Power Reactor. He was a contributor to the 
chapter on France.

Miguel Marín Bosch (Mexico City, Mexico) had a long career in Mexico’s Foreign 
Service, including serving as Deputy Minister for Asia, Africa, Europe and Multilateral 
Affairs. During the early 1990s, he was Mexico’s Ambassador to the Conference on Dis-
armament and Chair of the Comprehensive Test Ban Negotiations during the first year 
of formal negotiations (1994). He also served as Chairman of the Group of Governmen-
tal Experts for the 2002 United Nations Study on Disarmament and Nonproliferation 
Education.

Arend J. Meerburg (Den Haag, the Netherlands) has an MSc in nuclear reactor phys-
ics (1964) and thereafter worked for some years in oceanography and meteorology (in-
cluding in the Antarctic). He joined the Ministry of Foreign Affairs in 1970 and worked 
there until his retirement in 2004. During most of that period he was involved in 
multilateral arms control matters, including the final negotiations in Geneva of the 
Chemical Weapons Convention and the Comprehensive Nuclear-Test-Ban treaty. He 
was involved in the International Nuclear Fuel Cycle Evaluation, discussions of an 
International Plutonium Storage regime, and the Nuclear Suppliers Group. He served 
as Ambassador to Yemen (1996 – 2000). He was a member of the IAEA expert-group on 
Multilateral Nuclear Approaches to the Nuclear Fuel Cycle (2004 – 05).

Abdul H. Nayyar (Lahore, Pakistan, shared membership with Hoodbhoy) has a Ph.D. 
in physics (1973) from Imperial College, London, retired from the faculty of Quaid-e-
Azam University in 2005 and is Director of the Ali Institute of Education, Lahore, a 
college for educating teachers for Pakistan’s public school system. He has been active in 
Pakistan’s nuclear debate since the 1980s and a regular summer visitor with Princeton’s 
Program on Science and Global Security since 1998. He is President of Pakistan’s Peace 
Coalition and the Co-Convener of Pugwash, Pakistan. He has worked on a range of 
issues relating to nuclear weapons and nuclear energy in South Asia, including reactor 
safety, fissile-material production, the consequences of regional nuclear war, and the 
feasibility of remote monitoring of a moratorium on plutonium separation. He was a 
lead author of the chapter on Pakistan. 
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R. Rajaraman (IPFM Co-Chair, New Delhi, India, shared membership with Ramana) 
is Emeritus Professor of theoretical physics in the School of Physical Sciences, Jawa-
harlal Nehru University. He is a Fellow of the Indian Academy of Science and Vice 
President of the Indian National Science Academy. He has a Ph.D. in theoretical physics 
from Cornell University (with Hans Bethe, 1963). He has been contributing articles to 
India’s nuclear-weapon debate since 1970 and has been a regular summer visitor with 
Princeton’s Program on Science and Global Security since 2000. He has written on the 
dangers of accidental nuclear war and the limitations of civil defense. In recent years 
his focus has been on capping South Asia’s nuclear arsenals.

Ole Reistad (Oslo, Norway) is a Research Scientist with a joint appointment at the 
University of Oslo and the Norwegian Radiation Protection Authority. He has a Ph.D. 
in physics (2008) from the Norwegian University of Science and Technology. His work 
has focused primarily on highly enriched uranium issues and the security and safety 
of the naval spent nuclear fuel on Russia’s Kola Peninsula. He is a co-organizer of the 
Norway-UK cooperative study on the verification of nuclear-warhead dismantlement.

Henrik Salander (Stockholm, Sweden) chairs the Middle Powers Initiative, a non-
governmental organization that is dedicated to worldwide reduction and elimination 
of nuclear weapons. Previously, he headed the Department for Disarmament and Non- 
Proliferation in Sweden’s Ministry for Foreign Affairs. During 2004 – 06, he was Sec-
retary-General of the WMD Commission chaired by Hans Blix. He led Sweden’s del-
egation to the 2000 NPT Review Conference where Sweden, along with the six other 
members of the New Agenda Coalition (Brazil, Egypt, Ireland, Mexico, New Zealand 
and South Africa), extracted from the NPT weapon states 13 specific commitments to 
steps toward ending the nuclear arms race, reducing their nuclear arsenals and the dan-
ger of nuclear use, and establishing a framework for irreversible disarmament. Salander 
was Sweden’s Ambassador to the Geneva Conference on Disarmament (1999  – 2003) 
where he authored the 2002 “Five Ambassadors” Compromise Proposal to start ne-
gotiations on an FM(C)T and other treaties. He also chaired the 2002 session of the 
Preparatory Committee for the 2005 NPT Review Conference.

Annette Schaper (Frankfurt, Germany, shared membership with Kalinowski) is a 
Senior Research Associate at the Peace Research Institute in Frankfurt. Her Ph.D. (1987) 
is in experimental physics from Düsseldorf University. She co-founded the Interdisci-
plinary Research Group in Science, Technology, and Security at the Institute of Nuclear 
Physics at the Darmstadt University of Technology. She was a part-time member of the 
German delegation to the negotiations on the Comprehensive Test Ban Treaty and a 
member of the German delegation at the 1995 NPT Review and Extension Conference. 
Her research covers nuclear arms control and its technical aspects, including the test 
ban, a fissile material cut-off and verification of nuclear disarmament.

Mycle Schneider (Paris, France, shared membership with Marignac) is an indepen-
dent nuclear and energy consultant. He founded the energy information agency WISE-
Paris in 1983 and directed it until 2003. Since 1997 he has provided information and 
consulting services to many European governments, NGOs and think tanks. Since 
2004 he also has been in charge of the Environment and Energy Strategies lecture 
series for the International MSc in Project Management for Environmental and Energy 
Engineering Program at the French Ecole des Mines in Nantes. In 1997, along with 
Japan‘s Jinzaburo Takagi, he received Sweden‘s Right Livelihood Award “for serving to 
alert the world to the unparalleled dangers of plutonium to human life.” He was a lead 
author of the chapter on France.
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Shen Dingli (Shanghai, China) stepped down from IPFM in 2010. He is Professor of 
International Relations at Fudan University, the Executive Dean of the University’s In-
stitute of International Studies and Director of its Center for American Studies. He co-
founded China‘s first non-government-based Program on Arms Control and Regional 
Security at Fudan University. He received his Ph.D. in physics (1989) from Fudan Uni-
versity and did post-doctoral work in arms control at Princeton University. His research 
areas cover the China-U.S. security relationship, regional security and nonproliferation 
issues, and China‘s foreign and defense policies.

Tatsujiro Suzuki (Tokyo, Japan) stepped down from IPFM in 2009 upon being  
appointed the Vice-Chairman of the Japan Atomic Energy Commission. For the past 
20 years, Suzuki has been deeply involved in providing technical and policy assess-
ments of the international implications of Japan’s plutonium fuel-cycle policies and in 
examining the feasibility of interim spent-fuel storage as an alternative. He has a Ph.D. 
in nuclear engineering from Tokyo University (1988).

William Walker (Edinburg, United Kingdom) stepped down from IPFM in 2010. 
He is a Professor of International Relations at the University of St. Andrews. He co-au-
thored Plutonium and Highly Enriched Uranium 1996: World Inventories, Capabilities and 
Policies (SIPRI/Oxford University Press, 1997) and authored Nuclear Entrapment: THORP 
and the Politics of Commitment (Institute for Public Policy Research, London, 1999) and 
Weapons of Mass Destruction and International Order (Adelphi Paper, 2004). 
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Robert Alvarez served as senior policy advisor to the U.S. Secretary of Energy be-
tween 1993 –1999. Both before and after this period he worked as an independent ana-
lyst focusing on energy issues, including the environmental impacts of nuclear energy. 
He is now a Senior Scholar at the Institute for Policy Studies in Washington, DC. He 
was the lead author of the appendix on plutonium-bearing wastes to the United States 
chapter.

Marvin Miller was a member of the MIT Department of Nuclear Science and En-
gineering (NSE) from 1976 until his retirement in 1996. Previously, he was on the 
faculty of the Department of Electrical Engineering at Purdue University, working on 
laser theory and applications including isotope separation which was the bridge to his 
research on nuclear non-proliferation. He is now a Research Associate in the Science, 
Technology, and Society Program at MIT, where he continues his research on nuclear 
power and nuclear proliferation. He was the lead author of the chapter on Israel. 

Hui Zhang is a Research Associate at the Project on Managing the Atom in the Belfer
Center for Science and International Affairs at Harvard University’s John F. Kennedy 
School of Government. He leads a research initiative on China’s nuclear policies and 
his work includes verification techniques for nuclear arms control, the control of fissile 
material, nuclear terrorism, nuclear safeguards and non-proliferation, and the nuclear 
fuel cycle. He was a post-doctoral fellow at the Center for Energy and Environmental 
Studies, Princeton University from 1997 – 1999. He received his Ph.D. in nuclear physics 
in Beijing. He was the lead author of the chapter on China.
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Over the past six decades, our understanding of the 
nuclear danger has expanded from the threat posed 
by the vast nuclear arsenals created by the superpo-
wers in the Cold War to encompass the proliferation 
of nuclear weapons to additional states and now 
also to terrorist groups. To reduce this danger, it is 
essential to secure and to sharply reduce all stocks 
of highly enriched uranium and separated pluto-
nium, the key materials in nuclear weapons, and to 
limit any further production. These measures also 
would be an important step on the path to achieving 
and sustaining a world free of nuclear weapons.
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